P-adic cohomology

Last updated

In mathematics, p-adic cohomology means a cohomology theory for varieties of characteristic p whose values are modules over a ring of p-adic integers. Examples (in roughly historical order) include:

In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring and a multiplication is defined between elements of the ring and elements of the module.

In mathematics, Witt vector cohmology was an early p-adic cohomology theory for algebraic varieties introduced by Serre (1958). Serre constructed it by defining a sheaf of truncated Witt rings Wn over a variety V and then taking the inverse limit of the sheaf cohomology groups Hi(V, Wn) of these sheaves. Serre observed that though it gives cohomology groups over a field of characteristic 0, it cannot be a Weil cohomology theory because the cohomology groups vanish when i > dim(V). For Abelian varieties Serre (1958b) showed that one could obtain a reasonable first cohomology group by taking the direct sum of the Witt vector cohomology and the Tate module of the Picard variety.

In algebraic geometry, Monsky–Washnitzer cohomology is a p-adic cohomology theory defined for non-singular affine varieties over fields of positive characteristic p introduced by Paul Monsky and Gerard Washnitzer (1968) and Monsky (1968), who were motivated by the work of Bernard Dwork (1960). The idea is to lift the variety to characteristic 0, and then take a suitable subalgebra of the algebraic de Rham cohomology of Grothendieck (1966). The construction was simplified by van der Put (1986). Its extension to more general varieties is called rigid cohomology.

In mathematics, infinitesimal cohomology is a cohomology theory for algebraic varieties introduced by Grothendieck (1966). In characteristic 0 it is essentially the same as crystalline cohomology. In nonzero characteristic p Ogus (1975) showed that it is closely related to etale cohomology with mod p coefficients, a theory known to have undesirable properties.

See also

In mathematics, p-adic Hodge theory is a theory that provides a way to classify and study p-adic Galois representations of characteristic 0 local fields with residual characteristic p. The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge–Tate representation. Hodge–Tate representations are related to certain decompositions of p-adic cohomology theories analogous to the Hodge decomposition, hence the name p-adic Hodge theory. Further developments were inspired by properties of p-adic Galois representations arising from the étale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

Related Research Articles

<i>p</i>-adic number

In mathematics, the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, p-adic numbers are considered to be close when their difference is divisible by a high power of p: the higher the power, the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.

In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non-discrete topology. Given such a field, an absolute value can be defined on it. There are two basic types of local fields: those in which the absolute value is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups associated to a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, the Weil conjectures were some highly influential proposals by André Weil (1949), which led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

<i>p</i>-adic analysis

In mathematics, p-adic analysis is a branch of number theory that deals with the mathematical analysis of functions of p-adic numbers.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960's to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a 'motif' is the 'cohomology essence' of a variety.

In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields is an important tool in number theory.

Arithmetic geometry A branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

In mathematics an even integer, that is, a number that is divisible by 2, is called evenly even or doubly even if it is a multiple of 4, and oddly even or singly even if it is not.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by Alexander Grothendieck and developed by Pierre Berthelot (1974).

In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1).

In mathematics, a p-adic zeta function, or more generally a p-adic L-function, is a function analogous to the Riemann zeta function, or more general L-functions, but whose domain and target are p-adic. For example, the domain could be the p-adic integers Zp, a profinite p-group, or a p-adic family of Galois representations, and the image could be the p-adic numbers Qp or its algebraic closure.

Jean-Marc Fontaine French mathematician

Jean-Marc Fontaine was a French mathematician. He was one of the founders of p-adic Hodge theory. He was a professor at Paris-Sud 11 University from 1988 to his death.

In mathematics, an algebraic number field F is a finite degree field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector space over Q.

Christopher Deninger German mathematician

Christopher Deninger is a German mathematician at the University of Münster.