Perfect measure

Last updated

In mathematics specifically, in measure theory a perfect measure (or, more accurately, a perfect measure space) is one that is well-behaved in some sense. Intuitively, a perfect measure μ is one for which, if we consider the pushforward measure on the real line R, then every measurable set is μ-approximately a Borel set . The notion of perfectness is closely related to tightness of measures: indeed, in metric spaces, tight measures are always perfect.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

In measure theory, a discipline within mathematics, a pushforward measure is obtained by transferring a measure from one measurable space to another using a measurable function.

Real line Wikimedia disambiguation page

In mathematics, the real line, or real number line is the line whose points are the real numbers. That is, the real line is the set R of all real numbers, viewed as a geometric space, namely the Euclidean space of dimension one. It can be thought of as a vector space, a metric space, a topological space, a measure space, or a linear continuum.

Contents

Definition

A measure space (X, Σ, μ) is said to be perfect if, for every Σ-measurable function f : X  R and every A  R with f1(A)  Σ, there exist Borel subsets A1 and A2 of R such that

A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. Measure spaces contain information about the underlying set, the subsets of said set that are feasible for measuring and the method that is used for measuring. One important example of a measure space is a probability space.

Results concerning perfect measures

In mathematics, an inner regular measure is one for which the measure of a set can be approximated from within by compact subsets.

In mathematics, tightness is a concept in measure theory. The intuitive idea is that a given collection of measures does not "escape to infinity."

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

Measure (mathematics) mathematical function which associates a comparable numeric value to some subsets of a given set

In mathematical analysis, a measure on a set is a systematic way to assign a number to each suitable subset of that set, intuitively interpreted as its size. In this sense, a measure is a generalization of the concepts of length, area, and volume. A particularly important example is the Lebesgue measure on a Euclidean space, which assigns the conventional length, area, and volume of Euclidean geometry to suitable subsets of the n-dimensional Euclidean space Rn. For instance, the Lebesgue measure of the interval [0, 1] in the real numbers is its length in the everyday sense of the word, specifically, 1.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a collection Σ of subsets of X that includes X itself, is closed under complement, and is closed under countable unions.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

In mathematics and in particular measure theory, a measurable function is a function between two measurable spaces such that the preimage of any measurable set is measurable, analogously to the definition that a function between topological spaces is continuous if the preimage of each open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

In mathematics, a complete measure is a measure space in which every subset of every null set is measurable. More formally, a measure space (X, Σ, μ) is complete if and only if

In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure.

In mathematics, a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.

In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets.

In mathematics, a positive measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number, and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is the countable union of measurable sets with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite.

In measure theory, a branch of mathematics, a finite measure or totally finite measure is a special measure that always takes on finite values. Among finite measures are probability measures. The finite measures are often easier to handle than more general measures and show a variety of different properties depending on the sets they are defined on.

In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space Rn, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the Central Limit Theorem. Loosely speaking, it states that if a random variable X is obtained by summing a large number N of independent random variables of order 1, then X is of order and its law is approximately Gaussian.

In mathematics, the support of a measure μ on a measurable topological space is a precise notion of where in the space X the measure "lives". It is defined to be the largest (closed) subset of X for which every open neighbourhood of every point of the set has positive measure.

In mathematics, the disintegration theorem is a result in measure theory and probability theory. It rigorously defines the idea of a non-trivial "restriction" of a measure to a measure zero subset of the measure space in question. It is related to the existence of conditional probability measures. In a sense, "disintegration" is the opposite process to the construction of a product measure.

In mathematics, an invariant measure is a measure that is preserved by some function. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.

In mathematics, specifically in measure theory, the trivial measure on any measurable space is the measure μ which assigns zero measure to every measurable set: μ(A) = 0 for all A in Σ.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In mathematics, a standard Borel space is the Borel space associated to a Polish space. Discounting Borel spaces of discrete Polish spaces, there is, up to isomorphism, only one standard Borel space.

References

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.

Mathematical Reviews is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also publishes an associated online bibliographic database called MathSciNet which contains an electronic version of Mathematical Reviews and additionally contains citation information for over 3.5 million items as of 2018.