Jazz DSP

Last updated

The Jazz DSP, by Improv Systems, is a VLIW embedded digital signal processor architecture with a 2-stage instruction pipeline, and single-cycle execution units. The baseline DSP includes one arithmetic logic unit (ALU), dual memory interfaces, and the control unit (instruction decoder, branch control, task control). Most aspects of the architecture, such as the number and sizes of Memory Interface Units (MIU) or the types and number of Computation Units (CU), datapath width (16 or 32-bit), the number of interrupts and priority levels, and debugging support may be independently configured using a proprietary graphical user interface (GUI) tool. A key feature of the architecture allows the user to add custom instructions and/or custom execution units to enhance the performance of their application.

Digital signal processor specialized microprocessor

A digital signal processor (DSP) is a specialized microprocessor, with its architecture optimized for the operational needs of digital signal processing.

Arithmetic logic unit digital circuits

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. An ALU is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). A single CPU, FPU or GPU may contain multiple ALUs.

The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the operation of the processor. It tells the computer's memory, arithmetic and logic unit and input and output devices how to respond to the instructions that have been sent to the processor.

Typical Jazz DSP performance can exceed 1000 million operations per second (MOPS) at a modest 100 MHz clock frequency. Please refer to the EEMBC Benchmark site for more details on Jazz DSP performance as compared to other benchmarked processors.

Related Research Articles

Central processing unit electronic circuitry within a computer that carries out the instructions of a computer program by performing the basic arithmetic, logical, control and input/output (I/O) operations specified by the instructions

A central processing unit (CPU), also called a central processor or main processor, is the electronic circuitry within a computer that carries out the instructions of a computer program by performing the basic arithmetic, logic, controlling, and input/output (I/O) operations specified by the instructions. The computer industry has used the term "central processing unit" at least since the early 1960s. Traditionally, the term "CPU" refers to a processor, more specifically to its processing unit and control unit (CU), distinguishing these core elements of a computer from external components such as main memory and I/O circuitry.

Microcode is a computer hardware technique that imposes an interpreter between the CPU hardware and the programmer-visible instruction set architecture of the computer. As such, the microcode is a layer of hardware-level instructions that implement higher-level machine code instructions or internal state machine sequencing in many digital processing elements. Microcode is used in general-purpose central processing units, although in current desktop CPUs it is only a fallback path for cases that the faster hardwired control unit cannot handle.

MIPS is a reduced instruction set computer (RISC) instruction set architecture (ISA) developed by MIPS Computer Systems.

Very long instruction word (VLIW) refers to instruction set architectures designed to exploit instruction level parallelism (ILP). Whereas conventional central processing units mostly allow programs to specify instructions to execute in sequence only, a VLIW processor allows programs to explicitly specify instructions to execute in parallel. This design is intended to allow higher performance without the complexity inherent in some other designs.

Harvard architecture computer architecture where code and data each have a separate bus

The Harvard architecture is a computer architecture with physically separate storage and signal pathways for instructions and data. The term originated from the Harvard Mark I relay-based computer, which stored instructions on punched tape and data in electro-mechanical counters. These early machines had data storage entirely contained within the central processing unit, and provided no access to the instruction storage as data. Programs needed to be loaded by an operator; the processor could not initialize itself.

System on a chip type of integrated circuit

A system on a chip or system on chip is an integrated circuit that integrates all components of a computer or other electronic system. These components typically include a central processing unit (CPU), memory, input/output ports and secondary storage – all on a single substrate or microchip, the size of a coin. It may contain digital, analog, mixed-signal, and often radio frequency signal processing functions, depending on the application. As they are integrated on a single substrate, SoCs consume much less power and take up much less area than multi-chip designs with equivalent functionality. Because of this, SoCs are very common in the mobile computing and edge computing markets. Systems on chip are commonly used in embedded systems and the Internet of Things.

SuperH is a 32-bit reduced instruction set computing (RISC) instruction set architecture (ISA) developed by Hitachi and currently produced by Renesas. It is implemented by microcontrollers and microprocessors for embedded systems.

Fetching the instruction opcodes from program memory well in advance is known as prefetching and it is served by using prefetch input queue (PIQ).The pre-fetched instructions are stored in data structure - namely a queue. The fetching of opcodes well in advance, prior to their need for execution increases the overall efficiency of the processor boosting its speed. The processor no longer has to wait for the memory access operations for the subsequent instruction opcode to complete. This architecture was prominently used in the Intel 8086 microprocessor.

Blackfin

The Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality supplied by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.

The POWER1 is a multi-chip CPU developed and fabricated by IBM that implemented the POWER instruction set architecture (ISA). It was originally known as the RISC System/6000 CPU or, when in an abbreviated form, the RS/6000 CPU, before introduction of successors required the original name to be replaced with one that used the same naming scheme (POWERn) as its successors in order to differentiate it from the newer designs.

Microarchitecture the way a given instruction set architecture (ISA) is implemented on a processor

In computer engineering, microarchitecture, also called computer organization and sometimes abbreviated as µarch or uarch, is the way a given instruction set architecture (ISA) is implemented in a particular processor. A given ISA may be implemented with different microarchitectures; implementations may vary due to different goals of a given design or due to shifts in technology.

Nios II is a 32-bit embedded-processor architecture designed specifically for the Altera family of field-programmable gate array (FPGA) integrated circuits. Nios II incorporates many enhancements over the original Nios architecture, making it more suitable for a wider range of embedded computing applications, from digital signal processing (DSP) to system-control.

The MicroBlaze is a soft microprocessor core designed for Xilinx field-programmable gate arrays (FPGA). As a soft-core processor, MicroBlaze is implemented entirely in the general-purpose memory and logic fabric of Xilinx FPGAs.

Texas Instruments TMS320

Texas Instruments TMS320 is a blanket name for a series of digital signal processors (DSPs) from Texas Instruments. It was introduced on April 8, 1983 through the TMS32010 processor, which was then the fastest DSP on the market.

TRIPS architecture

TRIPS was a microprocessor architecture designed by a team at the University of Texas at Austin in conjunction with IBM, Intel, and Sun Microsystems. TRIPS uses an instruction set architecture designed to be easily broken down into large groups of instructions (graphs) that can be run on independent processing elements. The design collects related data into the graphs, attempting to avoid expensive data reads and writes and keeping the data in high speed memory close to the processing elements. The prototype TRIPS processor contains 16 such elements. TRIPS hoped to reach 1 TFLOP on a single processor, as papers were published from 2003 to 2006.

Manycore processors are specialist multi-core processors designed for a high degree of parallel processing, containing a large number of simpler, independent processor cores. Manycore processors are used extensively in embedded computers and high-performance computing. As of November 2018, the world's third fastest supercomputer, the Chinese Sunway TaihuLight, obtains its performance from 40,960 SW26010 manycore processors, each containing 256 cores.

The IBM A2 is a massively multicore capable and multithreaded 64-bit Power ISA processor core designed by IBM using the Power ISA v.2.06 specification. Versions of processors based on the A2 core range from a 2.3 GHz version with 16 cores consuming 65 W to a less powerful, four core version, consuming 20 W at 1.4 GHz. Each A2 core is capable of four-way multithreading and have 16 KB+16 KB instruction and data cache per core. All core variants execute instructions in-order.

Address generation unit

Address generation unit (AGU), sometimes also called address computation unit (ACU), is an execution unit inside central processing units (CPUs) that calculates addresses used by the CPU to access main memory. By having address calculations handled by separate circuitry that operates in parallel with the rest of the CPU, the number of CPU cycles required for executing various machine instructions can be reduced, bringing performance improvements.