# 2-group

Last updated

In mathematics, a 2-group, or 2-dimensional higher group, is a certain combination of group and groupoid. The 2-groups are part of a larger hierarchy of n-groups. In some of the literature, 2-groups are also called gr-categories or groupal groupoids.

## Definition

A 2-group is a monoidal category G in which every morphism is invertible and every object has a weak inverse. (Here, a weak inverse of an object x is an object y such that xy and yx are both isomorphic to the unit object.)

## Strict 2-groups

Much of the literature focuses on strict 2-groups. A strict 2-group is a strict monoidal category in which every morphism is invertible and every object has a strict inverse (so that xy and yx are actually equal to the unit object).

A strict 2-group is a group object in a category of categories; as such, they are also called groupal categories. Conversely, a strict 2-group is a category object in the category of groups; as such, they are also called categorical groups. They can also be identified with crossed modules, and are most often studied in that form. Thus, 2-groups in general can be seen as a weakening of crossed modules.

Every 2-group is equivalent to a strict 2-group, although this can't be done coherently: it doesn't extend to 2-group homomorphisms.

## Properties

Weak inverses can always be assigned coherently: one can define a functor on any 2-group G that assigns a weak inverse to each object and makes that object an adjoint equivalence in the monoidal category G.

Given a bicategory B and an object x of B, there is an automorphism 2-group of x in B, written AutB(x). The objects are the automorphisms of x, with multiplication given by composition, and the morphisms are the invertible 2-morphisms between these. If B is a 2-groupoid (so all objects and morphisms are weakly invertible) and x is its only object, then AutB(x) is the only data left in B. Thus, 2-groups may be identified with one-object 2-groupoids, much as groups may be identified with one-object groupoids and monoidal categories may be identified with one-object bicategories.

If G is a strict 2-group, then the objects of G form a group, called the underlying group of G and written G0. This will not work for arbitrary 2-groups; however, if one identifies isomorphic objects, then the equivalence classes form a group, called the fundamental group of G and written π1(G). (Note that even for a strict 2-group, the fundamental group will only be a quotient group of the underlying group.)

As a monoidal category, any 2-group G has a unit object IG. The automorphism group of IG is an abelian group by the Eckmann–Hilton argument, written Aut(IG) or π2(G).

The fundamental group of G acts on either side of π2(G), and the associator of G (as a monoidal category) defines an element of the cohomology group H31(G),π2(G)). In fact, 2-groups are classified in this way: given a group π1, an abelian group π2, a group action of π1 on π2, and an element of H312), there is a unique (up to equivalence) 2-group G with π1(G) isomorphic to π1, π2(G) isomorphic to π2, and the other data corresponding.

The element of H312) associated to a 2-group is sometimes called its Sinh invariant, as it was developed by Grothendieck's student Hoàng Xuân Sính.

## Fundamental 2-group

Given a topological space X and a point x in that space, there is a fundamental 2-group of X at x, written Π2(X,x). As a monoidal category, the objects are loops at x, with multiplication given by concatenation, and the morphisms are basepoint-preserving homotopies between loops, with these morphisms identified if they are themselves homotopic.

Conversely, given any 2-group G, one can find a unique (up to weak homotopy equivalence) pointed connected space (X,x) whose fundamental 2-group is G and whose homotopy groups πn are trivial for n > 2. In this way, 2-groups classify pointed connected weak homotopy 2-types. This is a generalisation of the construction of Eilenberg–Mac Lane spaces.

If X is a topological space with basepoint x, then the fundamental group of X at x is the same as the fundamental group of the fundamental 2-group of X at x; that is,

${\displaystyle \pi _{1}(X,x)=\pi _{1}(\Pi _{2}(X,x)).\!}$

This fact is the origin of the term "fundamental" in both of its 2-group instances.

Similarly,

${\displaystyle \pi _{2}(X,x)=\pi _{2}(\Pi _{2}(X,x)).\!}$

Thus, both the first and second homotopy groups of a space are contained within its fundamental 2-group. As this 2-group also defines an action of π1(X,x) on π2(X,x) and an element of the cohomology group H31(X,x),π2(X,x)), this is precisely the data needed to form the Postnikov tower of X if X is a pointed connected homotopy 2-type.

## Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups.

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

In mathematics, a category is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions.

In mathematics, specifically algebraic topology, a covering map is a continuous function from a topological space to a topological space such that each point in has an open neighborhood evenly covered by . In this case, is called a covering space and the base space of the covering projection. The definition implies that every covering map is a local homeomorphism.

The following outline is provided as an overview of and guide to category theory, the area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of objects and arrows, where these collections satisfy certain basic conditions. Many significant areas of mathematics can be formalised as categories, and the use of category theory allows many intricate and subtle mathematical results in these fields to be stated, and proved, in a much simpler way than without the use of categories.

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.

In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.

In mathematics, and especially in homotopy theory, a crossed module consists of groups G and H, where G acts on H by automorphisms (which we will write on the left, , and a homomorphism of groups

In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different categories, as discussed below.

This is a glossary of properties and concepts in category theory in mathematics.

The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces.

In mathematics, the Whitehead product is a graded quasi-Lie algebra structure on the homotopy groups of a space. It was defined by J. H. C. Whitehead in.

In mathematics, especially in the area of topology known as algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.

In mathematics, an n-group, or n-dimensional higher group, is a special kind of n-category that generalises the concept of group to higher-dimensional algebra. Here, may be any natural number or infinity. The thesis of Alexander Grothendieck's student Hoàng Xuân Sính was an in-depth study of 2-groups under the moniker 'gr-category'.

In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category.

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of category theory, the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids.

[...] In certain situations it is much more elegant, even indispensable for understanding something, to work with fundamental groupoids ... people still obstinately persist, when calculating with fundamental groups, in fixing a single base point, instead of cleverly choosing a whole packet of points which is invariant under the symmetries of the situation, which thus get lost on the way. In certain situations (such as descent theorems for fundamental groups `a la Van Kampen Theorem it is much more elegant, even indispensable for understanding something, to work with fundamental groupoids with respect to a suitable packet of base points, [,,,]

In mathematics, homotopy theory is a systematic study of situations in which maps come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry and category theory.

In Mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups.