3-Hydroxypentanoic acid

Last updated
3-Hydroxypentanoic acid
3-hydroxypentanoic acid.png
Names
Preferred IUPAC name
3-Hydroxypentanoic acid
Other names
3-Hydroxyvalerate
3-Hydroxy valeric acid
beta-Hydroxyvaleric acid
beta-Hydroxypentanoate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.123.761 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C5H10O3/c1-2-4(6)3-5(7)8/h4,6H,2-3H2,1H3,(H,7,8) Yes check.svgY
    Key: REKYPYSUBKSCAT-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C5H10O3/c1-2-4(6)3-5(7)8/h4,6H,2-3H2,1H3,(H,7,8)
    Key: REKYPYSUBKSCAT-UHFFFAOYAT
  • CCC(CC(=O)O)O
  • O=C(O)CC(O)CC
Properties
C5H10O3
Molar mass 118.13 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

3-Hydroxypentanoic acid is the organic compound with the formula CH3CH2CH(OH)CH2CO2H. It is one of the hydroxypentanoic acids. [1] It is made from odd carbon fatty acids in the liver and rapidly enters the brain. As opposed to 4-carbon ketone bodies, 3-hydroxypentanoic acid is anaplerotic, meaning it can refill the pool of TCA cycle intermediates. The triglyceride triheptanoin is used clinically to produce beta-hydroxypentanoate. [2]

Contents

Properties

Solubility

Related Research Articles

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Citric acid cycle</span> Interconnected biochemical reactions releasing energy

The citric acid cycle—also known as the Krebs cycle, Szent-Györgyi-Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins. The chemical energy released is available under the form of ATP. The Krebs cycle is used by organisms that respire (as opposed to organisms that ferment) to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism. Even though it is branded as a 'cycle', it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.

<span class="mw-page-title-main">Fatty acid</span> Carboxylic acid

In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. Fatty acids are a major component of the lipids in some species such as microalgae but in some other organisms are not found in their standalone form, but instead exist as three main classes of esters: triglycerides, phospholipids, and cholesteryl esters. In any of these forms, fatty acids are both important dietary sources of fuel for animals and important structural components for cells.

<span class="mw-page-title-main">Metabolism</span> Set of chemical reactions in organisms

Metabolism is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The word metabolism can also refer to the sum of all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary metabolism.

<span class="mw-page-title-main">Carbonic acid</span> Chemical compound

Carbonic acid is a chemical compound with the chemical formula H2CO3. The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is quite stable at room temperature. The interconversion of carbon dioxide and carbonic acid is related to the breathing cycle of animals and the acidification of natural waters.

<span class="mw-page-title-main">Triglyceride</span> Any ester of glycerol having all three hydroxyl groups esterified with fatty acids

A triglyceride is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other vertebrates, as well as vegetable fat. They are also present in the blood to enable the bidirectional transference of adipose fat and blood glucose from the liver, and are a major component of human skin oils.

<span class="mw-page-title-main">Malic acid</span> Dicarboxylic acid responsible for apple acidity

Malic acid is an organic compound with the molecular formula HO2CCH(OH)CH2CO2H. It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms, though only the L-isomer exists naturally. The salts and esters of malic acid are known as malates. The malate anion is a metabolic intermediate in the citric acid cycle.

<span class="mw-page-title-main">Mitochondrial matrix</span> Space within the inner membrane of the mitochondrion

In the mitochondrion, the matrix is the space within the inner membrane. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions.[1] The enzymes in the matrix facilitate reactions responsible for the production of ATP, such as the citric acid cycle, oxidative phosphorylation, oxidation of pyruvate, and the beta oxidation of fatty acids.

Anaplerotic reactions, a term coined by Hans Kornberg and originating from the Greek ἀνά= 'up' and πληρόω= 'to fill', are chemical reactions that form intermediates of a metabolic pathway. Examples of such are found in the citric acid cycle. In normal function of this cycle for respiration, concentrations of TCA intermediates remain constant; however, many biosynthetic reactions also use these molecules as a substrate. Anaplerosis is the act of replenishing TCA cycle intermediates that have been extracted for biosynthesis.

<span class="mw-page-title-main">Pyruvate carboxylase</span> Enzyme

Pyruvate carboxylase (PC) encoded by the gene PC is an enzyme of the ligase class that catalyzes the physiologically irreversible carboxylation of pyruvate to form oxaloacetate (OAA).

In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH2, which are electron carriers used in the electron transport chain. It is named as such because the beta carbon of the fatty acid chain undergoes oxidation and is converted to a carbonyl group to start the cycle all over again. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

Enanthic acid, also called heptanoic acid, is an organic compound composed of a seven-carbon chain terminating in a carboxylic acid functional group. It is a colorless oily liquid with an unpleasant, rancid odor. It contributes to the odor of some rancid oils. It is slightly soluble in water, but very soluble in ethanol and ether. Salts and esters of enanthic acid are called enanthates or heptanoates.

Pyruvate carboxylase deficiency is an inherited disorder that causes lactic acid to accumulate in the blood. High levels of these substances can damage the body's organs and tissues, particularly in the nervous system. Pyruvate carboxylase deficiency is a rare condition, with an estimated incidence of 1 in 250,000 births worldwide. Type A of the disease appears to be much more common in some Algonkian Indian tribes in eastern Canada, while the type B disease is more present in European populations.

<span class="mw-page-title-main">Acyl-CoA</span> Group of coenzymes that metabolize fatty acids

Acyl-CoA is a group of coenzymes that metabolize fatty acids. Acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP, the universal biochemical energy carrier.

Short-chain fatty acids (SCFAs) are fatty acids of two to six carbon atoms. The SCFAs lower limit is interpreted differently, either with 1, 2, 3 or 4 carbon atoms. Derived from intestinal microbial fermentation of indigestible foods, SCFAs in human gut are acetic, propionic and butyric acid. They are the main energy source of colonocytes, making them crucial to gastrointestinal health. SCFAs all possess varying degrees of water solubility, which distinguishes them from longer chain fatty acids that are immiscible.

<span class="mw-page-title-main">Homoserine dehydrogenase</span> Enzyme

In enzymology, a homoserine dehydrogenase (EC 1.1.1.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Beta hydroxycarboxylic acid</span> Class of chemical compounds

A beta hydroxy carboxylic acid or β-hydroxy carboxylic acid (BHA) is a carboxylic acid containing a hydroxy functional group separated by two carbon atoms. They are related to alpha hydroxy acids, in which the two functional groups are separated by only one carbon atom.

<span class="mw-page-title-main">Triheptanoin</span> Chemical compound

Triheptanoin, sold under the brand name Dojolvi, is a medication for the treatment of children and adults with molecularly confirmed long-chain fatty acid oxidation disorders (LC-FAOD).

<span class="mw-page-title-main">3-Oxopentanoic acid</span> Chemical compound

3-Oxopentanoic acid, or beta-ketopentanoate, is a 5-carbon ketone body. It is made from odd carbon fatty acids in the liver and rapidly enters the brain.

<span class="mw-page-title-main">PHBV</span> Chemical compound

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), commonly known as PHBV, is a polyhydroxyalkanoate-type polymer. It is biodegradable, nontoxic, biocompatible plastic produced naturally by bacteria and a good alternative for many non-biodegradable synthetic polymers. It is a thermoplastic linear aliphatic polyester. It is obtained by the copolymerization of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid. PHBV is used in speciality packaging, orthopedic devices and in controlled release of drugs. PHBV undergoes bacterial degradation in the environment.

References

  1. Miltenberger, Karlheinz (2000). "Hydroxycarboxylic Acids, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_507. ISBN   978-3527306732.
  2. Renée P. Kinman; Takhar Kasumov; Kathryn A. Jobbins; Katherine R. Thomas; Jillian Adams; Lisa N. Brunengraber; Gerd Kutz; Wolf-Ulrich Brewer; Charles R. Roe & Henri Brunengraber (2006). "Parenteral and Enteral Metabolism of Anaplerotic Triheptanoin in Normal Rats". Am J Physiol Endocrinol Metab. 291 (4): E860–E866. doi:10.1152/ajpendo.00366.2005. PMID   16705058. Reprint
  3. https://hmdb.ca/metabolites/HMDB0000531