6-MeO-THH

Last updated
6-MeO-THH
6-MeO-THH structure.svg
Identifiers
  • 6-Methoxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C13H16N2O
Molar mass 216.284 g·mol−1
3D model (JSmol)
Melting point 152–155 °C (306–311 °F)
  • CC1NCCC2=C1NC(C=C3)=C2C=C3OC
  • InChI=1S/C13H16N2O/c1-8-13-10(5-6-14-8)11-7-9(16-2)3-4-12(11)15-13/h3-4,7-8,14-15H,5-6H2,1-2H3 Yes check.svgY
  • Key:RDUORFDQRFHYBF-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

6-MeO-THH, or 6-methoxy-1,2,3,4-tetrahydroharman, is a β-carboline (or more specifically a pinoline) derivative and a structural isomer of tetrahydroharmine (7-MeO-THH). 6-MeO-THH is mentioned in Alexander Shulgin's book TiHKAL (Tryptamines I Have Known and Loved), stating that 6-MeO-THH is very similar to the other carbolines. [1] Limited testing suggests that it possesses mild psychoactive effects at 1.5 mg/kg and is said to be about one-third as potent as 6-methoxyharmalan. [2] It has been isolated from certain plants of the Virola family.

Contents

Pharmacology

Very little is known about the psychoactivity of 6-MeO-THH in humans. Studies in rats have shown it to bind to a number of serotonin 5-HT1 receptors and 5-HT2 receptors, dopamine D2 receptors, benzodiazepine receptors, and imidazoline receptors. [2] [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Psychopharmacology</span> Study of the effects of psychoactive drugs

Psychopharmacology is the scientific study of the effects drugs have on mood, sensation, thinking, behavior, judgment and evaluation, and memory. It is distinguished from neuropsychopharmacology, which emphasizes the correlation between drug-induced changes in the functioning of cells in the nervous system and changes in consciousness and behavior.

<span class="mw-page-title-main">5-MeO-DMT</span> Chemical compound

5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine) or O-methyl-bufotenin is a psychedelic of the tryptamine class. It is found in a wide variety of plant species, and also is secreted by the glands of at least one toad species, the Colorado River toad. Like its close relatives DMT and bufotenin (5-HO-DMT), it has been used as an entheogen in South America. Slang terms include Five-methoxy, The power, and Toad venom.

<i>beta</i>-Carboline Chemical compound also known as norharmane

β-Carboline (9H-pyrido[3,4-b]indole) represents the basic chemical structure for more than one hundred alkaloids and synthetic compounds. The effects of these substances depend on their respective substituent. Natural β-carbolines primarily influence brain functions but can also exhibit antioxidant effects. Synthetically designed β-carboline derivatives have recently been shown to have neuroprotective, cognitive enhancing and anti-cancer properties.

<span class="mw-page-title-main">2,5-Dimethoxy-4-methylamphetamine</span> Chemical compound

2,5-Dimethoxy-4-methylamphetamine is a psychedelic and a substituted amphetamine. It was first synthesized by Alexander Shulgin, and later reported in his book PiHKAL: A Chemical Love Story. DOM is classified as a Schedule I substance in the United States, and is similarly controlled in other parts of the world. Internationally, it is a Schedule I drug under the Convention on Psychotropic Substances. It is generally taken orally.

<span class="mw-page-title-main">5-MeO-DET</span> Chemical compound

5-MeO-DET or 5-methoxy-N,N-diethyltryptamine is a hallucinogenic tryptamine.

<span class="mw-page-title-main">4-HO-MiPT</span> Chemical compound

4-HO-MiPT is a synthetic substituted aromatic compound and a lesser-known psychedelic tryptamine. It is thought to be a serotonergic psychedelic, similar to magic mushrooms, LSD and mescaline. Its molecular structure and pharmacological effects somewhat resemble those of the tryptamine psilocin, which is the primary psychoactive chemical in magic mushrooms.

<span class="mw-page-title-main">5-MeO-2-TMT</span> Chemical compound

5-Methoxy-2,N,N-trimethyltryptamine is a psychoactive drug of the tryptamine chemical class which acts as a psychedelic. It was first synthesized by Alexander Shulgin and reported in his book TiHKAL. 5-MeO-TMT is claimed to show psychoactive effects at a dosage of 75–150 mg orally, but these are relatively mild compared to those of other similar compounds. This suggests that while the methyl group on the 2-position of the molecule has impaired the binding of metabolic enzymes like monoamine oxidase (MAO), it is also interfering with binding to and/or activation of the serotonin 5-HT2A receptor, the target responsible for mediating the hallucinogenic effects of such compounds.

<span class="mw-page-title-main">2,5-Dimethoxy-4-amylamphetamine</span> Chemical compound

Dimethoxy-4-amylamphetamine (DOAM) is a lesser-known psychedelic drug and a substituted amphetamine. DOAM was first synthesized by Alexander Shulgin. In his book PiHKAL (Phenethylamines i Have Known And Loved), the minimum dosage is listed as 10 mg, and the duration is unknown. DOAM produces a bare threshold and tenseness. As the 4-alkyl chain length is increased from shorter homologues such as DOM, DOET and DOPR which are all potent hallucinogens, the 5-HT2 binding affinity increases, rising to a maximum with the 4-(n-hexyl) derivative before falling again with even longer chains, but compounds with chain length longer than n-propyl, or with other bulky groups such as isopropyl, t-butyl or γ-phenylpropyl at the 4- position, fail to substitute for hallucinogens in animals or produce hallucinogenic effects in humans, suggesting these have low efficacy and are thus antagonists or partial agonists at the 5-HT2A receptor.

<span class="mw-page-title-main">MMDA-2</span> Psychedelic drug

MMDA-2 (2-methoxy-4,5-methylenedioxyamphetamine) is a psychedelic drug of the amphetamine class. It is closely related to MMDA and MDA.

<span class="mw-page-title-main">MS-245</span> Chemical compound

MS-245 is a tryptamine derivative used in scientific research. It acts as a selective 5-HT6 receptor antagonist with a Ki of 2.3 nM, and was derived through structure-activity relationship development of the selective 5-HT6 agonist EMDT. It has been used as a lead compound for further development of tryptamine-derived 5-HT6 antagonists. In animal studies it has been shown to boost the activity of, but not substitute for, both amphetamine and nicotine.

<span class="mw-page-title-main">KML-010</span> Chemical compound

KML-010 is a drug derived from spiperone. It functions as a highly selective 5-HT2A receptor antagonist, with negligible affinity for the 5-HT1A or 5-HT2C receptors, and over 400-fold lower affinity for the D2 receptor in comparison to spiperone.

DO<em>x</em> Class of chemical compounds

4-Substituted-2,5-dimethoxyamphetamines (DOx) is a chemical class of substituted amphetamine derivatives featuring methoxy groups at the 2- and 5- positions of the phenyl ring, and a substituent such as alkyl or halogen at the 4- position of the phenyl ring. Most compounds of this class are potent and long-lasting psychedelic drugs, and act as highly selective 5-HT2A, 5-HT2B, and 5-HT2C receptor partial agonists. A few bulkier derivatives such as DOAM have similarly high binding affinity for 5-HT2 receptors but instead act as antagonists, and so do not produce psychedelic effects though they retain amphetamine-like stimulant effects.

<span class="mw-page-title-main">7,N,N-TMT</span> Chemical compound

7,N,N-trimethyltryptamine (7-methyl-DMT, 7-TMT), is a tryptamine derivative which acts as an agonist of 5-HT2 receptors. In animal tests, both 7-TMT and its 5-methoxy derivative 5-MeO-7-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT, but the larger 7-ethyl and 7-bromo derivatives of DMT did not produce psychedelic responses despite having higher 5-HT2 receptor affinity in vitro (cf. DOBU, DOAM). 7-TMT also weakly inhibits reuptake of serotonin but with little effect on dopamine or noradrenaline reuptake.

<span class="mw-page-title-main">5-Ethyl-DMT</span> Chemical compound

5-Ethyl-N,N-dimethyltryptamine is a tryptamine derivative which acts as an agonist at the 5-HT1A and 5-HT1D serotonin receptors, with around 3x selectivity for 5-HT1D.

<span class="mw-page-title-main">5-(Nonyloxy)tryptamine</span> Chemical compound

5-(Nonyloxy)tryptamine is a tryptamine derivative which acts as a selective agonist at the 5-HT1B receptor. Increasing the O-alkoxy chain length in this series gives generally increasing potency and selectivity for 5-HT1B, with highest activity found for the nonyloxy derivative, having a 5-HT1B binding affinity of 1.0 nM, and around 300-fold selectivity over the related 5-HT1A receptor.

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">5-MeO-NBpBrT</span> Chemical compound

5-MeO-NBpBrT is a N-substituted member of the methoxytryptamine family of compounds. Like other such compounds it acts as an antagonist for the 5-HT2A receptor, with a claimed 100x selectivity over the closely related 5-HT2C receptor. While N-benzyl substitution of psychedelic phenethylamines often results in potent 5-HT2A agonists, it had been thought that N-benzyl tryptamines show much lower efficacy and are either very weak partial agonists or antagonists at 5-HT2A, though more recent research has shown stronger agonist activity for 3-substituted benzyl derivatives. Extending the benzyl group to a substituted phenethyl can also recover agonist activity in certain cases.

<span class="mw-page-title-main">Acetryptine</span> Drug

Acetryptine (INN), also known as 5-acetyltryptamine (5-AT), is a drug described as an antihypertensive agent which was never marketed. Structurally, acetryptine is a substituted tryptamine, and is closely related to other substituted tryptamines like serotonin (5-hydroxytryptamine). It was developed in the early 1960s. The binding of acetryptine to serotonin receptors does not seem to have been well-investigated, although it was assessed at the 5-HT1A and 5-HT1D receptors and found to bind to them with high affinity. The drug may also act as a monoamine oxidase inhibitor (MAOI); specifically, as an inhibitor of MAO-A.

<i>O</i>-Acetylbufotenine Chemical compound

O-Acetylbufotenine is a tryptamine derivative which produces psychedelic-appropriate responding in animal studies. It is an acylated derivative of bufotenine with higher lipophilicity that allows it to cross the blood–brain barrier; once inside the brain, it is metabolised to bufotenine. It also acts directly as an agonist at 5-HT1A and 5-HT1D receptors.

References

  1. Shulgin A, Shulgin A (September 1997). TiHKAL: The Continuation. Berkeley, California: Transform Press. p. 425. ISBN   0-9630096-9-9. OCLC   38503252.
  2. 1 2 Grella B, Dukat M, Young R, Teitler M, Herrick-Davis K, Gauthier CB, Glennon RA (April 1998). "Investigation of hallucinogenic and related beta-carbolines". Drug and Alcohol Dependence. 50 (2): 99–107. doi:10.1016/S0376-8716(97)00163-4. PMID   9649961.
  3. Glennon RA, Dukat M, Grella B, Hong S, Costantino L, Teitler M, et al. (August 2000). "Binding of beta-carbolines and related agents at serotonin (5-HT(2) and 5-HT(1A)), dopamine (D(2)) and benzodiazepine receptors". Drug and Alcohol Dependence. 60 (2): 121–32. doi:10.1016/S0376-8716(99)00148-9. PMID   10940539.
  4. Husbands SM, Glennon RA, Gorgerat S, Gough R, Tyacke R, Crosby J, et al. (October 2001). "beta-carboline binding to imidazoline receptors". Drug and Alcohol Dependence. 64 (2): 203–8. doi:10.1016/S0376-8716(01)00123-5. PMID   11543990.