ASCII

Last updated

ASCII
ASCII-infobox.svg
ASCII (1967 or later)
MIME / IANAus-ascii
Alias(es)ISO-IR-006 [1]
Language(s) English
Classification ISO 646 series
Extensions
Preceded by ITA 2, FIELDATA
Succeeded by ISO 8859, Unicode
Other related encoding(s) PETSCII

ASCII ( /ˈæsk/ ( Loudspeaker.svg listen ) ASS-kee), [2] :6 abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Most modern character-encoding schemes are based on ASCII, although they support many additional characters.

Character encoding is used to represent a repertoire of characters by some kind of encoding system. Depending on the abstraction level and context, corresponding code points and the resulting code space may be regarded as bit patterns, octets, natural numbers, electrical pulses, etc. A character encoding is used in computation, data storage, and transmission of textual data. "Character set", "character map", "codeset" and "code page" are related, but not identical, terms.

Telecommunications equipment is a hardware which is used for the purposes of telecommunications. Since the 1990s the boundary between telecoms equipment and IT hardware has become blurred as a result of the growth of the internet and its increasing role in the transfer of telecoms data.

Contents

ASCII is the traditional name for the encoding system; the Internet Assigned Numbers Authority (IANA) prefers the updated name US-ASCII, which clarifies that this system was developed in the US and based on the typographical symbols predominantly in use there. [3]

Internet Assigned Numbers Authority Department of ICANN, a nonprofit private American corporation

The Internet Assigned Numbers Authority (IANA) is a function of ICANN, a nonprofit private American corporation that oversees global IP address allocation, autonomous system number allocation, root zone management in the Domain Name System (DNS), media types, and other Internet Protocol-related symbols and Internet numbers.

ASCII is one of the IEEE milestones.

ASCII chart from an earlier-than 1972 printer manual (b1 is the least significant bit.) USASCII code chart.png
ASCII chart from an earlier-than 1972 printer manual (b1 is the least significant bit.)

Overview

ASCII was developed from telegraph code. Its first commercial use was as a seven-bit teleprinter code promoted by Bell data services. Work on the ASCII standard began on October 6, 1960, with the first meeting of the American Standards Association's (ASA) (now the American National Standards Institute or ANSI) X3.2 subcommittee. The first edition of the standard was published in 1963, [4] [5] underwent a major revision during 1967, [6] [7] and experienced its most recent update during 1986. [8] Compared to earlier telegraph codes, the proposed Bell code and ASCII were both ordered for more convenient sorting (i.e., alphabetization) of lists, and added features for devices other than teleprinters.

A telegraph code is one of the character encodings used to transmit information by telegraphy. Morse code is the most well known such code. Telegraphy usually refers to the electrical telegraph, but telegraph systems using the optical telegraph were in use before that. A code consists of a number of code points, each corresponding to a letter of the alphabet, a numeral, or some other character. In codes intended for machines rather than humans, code points for control characters, such as carriage return, are required to control the operation of the mechanism. Each code point is made up of a number of elements arranged in a unique way for that character. There are usually two types of element, but more element types were employed in some codes not intended for machines. For instance, American Morse code had about five elements, rather than the two of International Morse Code.

The bit is a basic unit of information in information theory, computing, and digital communications. The name is a portmanteau of binary digit.

Teleprinter device for transmitting messages in written form by electrical signals

A teleprinter is an electromechanical device that can be used to send and receive typed messages through various communications channels, in both point-to-point and point-to-multipoint configurations. Initially they were used in telegraphy, which developed in the late 1830s and 1840s as the first use of electrical engineering. The machines were adapted to provide a user interface to early mainframe computers and minicomputers, sending typed data to the computer and printing the response. Some models could also be used to create punched tape for data storage and to read back such tape for local printing or transmission.

Originally based on the English alphabet, ASCII encodes 128 specified characters into seven-bit integers as shown by the ASCII chart above. [9] Ninety-five of the encoded characters are printable: these include the digits 0 to 9, lowercase letters a to z, uppercase letters A to Z, and punctuation symbols. In addition, the original ASCII specification included 33 non-printing control codes which originated with Teletype machines; most of these are now obsolete, [10] although a few are still commonly used, such as the carriage return, line feed and tab codes.

English alphabet Latin alphabet consisting of 26 letters, each having an uppercase and a lowercase form

The modern English alphabet is a Latin alphabet consisting of 26 letters, each having an upper- and lower-case form. It originated around the 7th century from the Latin script. Since then, letters have been added or removed to give the current Modern English alphabet of 26 letters :

In computer and machine-based telecommunications terminology, a character is a unit of information that roughly corresponds to a grapheme, grapheme-like unit, or symbol, such as in an alphabet or syllabary in the written form of a natural language.

A carriage return, sometimes known as a cartridge return and often shortened to CR, <CR> or return, is a control character or mechanism used to reset a device's position to the beginning of a line of text. It is closely associated with the line feed and newline concepts, although it can be considered separately in its own right.

For example, lowercase i would be represented in the ASCII encoding by binary 1101001 = hexadecimal 69 (i is the ninth letter) = decimal 105.

Binary number system that represents numeric values using two symbols; 0 and 1

In mathematics and digital electronics, a binary number is a number expressed in the base-2 numeral system or binary numeral system, which uses only two symbols: typically "0" (zero) and "1" (one).

Hexadecimal numerical system on base 16

In mathematics and computing, hexadecimal is a positional system that represents numbers using a base of 16. Unlike the common way of representing numbers with ten symbols, it uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values zero to nine, and "A"–"F" to represent values ten to fifteen.

Decimal Numeral system with ten as its base

The decimal numeral system is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as decimal notation.

History

ASCII (1963). Control pictures of equivalent controls are shown where they exist, or a grey dot otherwise. ASCII1963-infobox-paths.svg
ASCII (1963). Control pictures of equivalent controls are shown where they exist, or a grey dot otherwise.

The American Standard Code for Information Interchange (ASCII) was developed under the auspices of a committee of the American Standards Association (ASA), called the X3 committee, by its X3.2 (later X3L2) subcommittee, and later by that subcommittee's X3.2.4 working group (now INCITS). The ASA became the United States of America Standards Institute (USASI) [2] :211 and ultimately the American National Standards Institute (ANSI).

American National Standards Institute non-profit organization in the United States that develops standards

The American National Standards Institute is a private non-profit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States. The organization also coordinates U.S. standards with international standards so that American products can be used worldwide.

With the other special characters and control codes filled in, ASCII was published as ASA X3.4-1963, [5] [11] leaving 28 code positions without any assigned meaning, reserved for future standardization, and one unassigned control code. [2] :66, 245 There was some debate at the time whether there should be more control characters rather than the lowercase alphabet. [2] :435 The indecision did not last long: during May 1963 the CCITT Working Party on the New Telegraph Alphabet proposed to assign lowercase characters to sticks [lower-alpha 1] [12] 6 and 7, [13] and International Organization for Standardization TC 97 SC 2 voted during October to incorporate the change into its draft standard. [14] The X3.2.4 task group voted its approval for the change to ASCII at its May 1963 meeting. [15] Locating the lowercase letters in sticks [lower-alpha 1] [12] 6 and 7 caused the characters to differ in bit pattern from the upper case by a single bit, which simplified case-insensitive character matching and the construction of keyboards and printers.

The X3 committee made other changes, including other new characters (the brace and vertical bar characters), [16] renaming some control characters (SOM became start of header (SOH)) and moving or removing others (RU was removed). [2] :247–248 ASCII was subsequently updated as USAS X3.4-1967, [6] [17] then USAS X3.4-1968, ANSI X3.4-1977, and finally, ANSI X3.4-1986. [8] [18]

Revisions of the ASCII standard:

In the X3.15 standard, the X3 committee also addressed how ASCII should be transmitted (least significant bit first), [2] :249–253 [22] and how it should be recorded on perforated tape. They proposed a 9-track standard for magnetic tape, and attempted to deal with some punched card formats.

Design considerations

Bit width

The X3.2 subcommittee designed ASCII based on the earlier teleprinter encoding systems. Like other character encodings, ASCII specifies a correspondence between digital bit patterns and character symbols (i.e. graphemes and control characters). This allows digital devices to communicate with each other and to process, store, and communicate character-oriented information such as written language. Before ASCII was developed, the encodings in use included 26 alphabetic characters, 10 numerical digits, and from 11 to 25 special graphic symbols. To include all these, and control characters compatible with the Comité Consultatif International Téléphonique et Télégraphique (CCITT) International Telegraph Alphabet No. 2 (ITA2) standard of 1924, [23] [24] FIELDATA (1956[ citation needed ]), and early EBCDIC (1963), more than 64 codes were required for ASCII.

ITA2 were in turn based on the 5-bit telegraph code Émile Baudot invented in 1870 and patented in 1874. [24]

The committee debated the possibility of a shift function (like in ITA2), which would allow more than 64 codes to be represented by a six-bit code. In a shifted code, some character codes determine choices between options for the following character codes. It allows compact encoding, but is less reliable for data transmission, as an error in transmitting the shift code typically makes a long part of the transmission unreadable. The standards committee decided against shifting, and so ASCII required at least a seven-bit code. [2] :215, 236§4

The committee considered an eight-bit code, since eight bits (octets) would allow two four-bit patterns to efficiently encode two digits with binary-coded decimal. However, it would require all data transmission to send eight bits when seven could suffice. The committee voted to use a seven-bit code to minimize costs associated with data transmission. Since perforated tape at the time could record eight bits in one position, it also allowed for a parity bit for error checking if desired. [2] :217, 236§5 Eight-bit machines (with octets as the native data type) that did not use parity checking typically set the eighth bit to 0. [25] In some printers, the high bit was used to enable Italics printing[ citation needed ].

Internal organization

The code itself was patterned so that most control codes were together and all graphic codes were together, for ease of identification. The first two so-called ASCII sticks [lower-alpha 1] [12] (32 positions) were reserved for control characters. [2] :220, 236§8,9) The "space" character had to come before graphics to make sorting easier, so it became position 20 hex ; [2] :237§10 for the same reason, many special signs commonly used as separators were placed before digits. The committee decided it was important to support uppercase 64-character alphabets, and chose to pattern ASCII so it could be reduced easily to a usable 64-character set of graphic codes, [2] :228, 237§14 as was done in the DEC SIXBIT code (1963). Lowercase letters were therefore not interleaved with uppercase. To keep options available for lowercase letters and other graphics, the special and numeric codes were arranged before the letters, and the letter A was placed in position 41 hex to match the draft of the corresponding British standard. [2] :238§18 The digits 0–9 are prefixed with 011, but the remaining 4 bits correspond to their respective values in binary, making conversion with binary-coded decimal straightforward.

Many of the non-alphanumeric characters were positioned to correspond to their shifted position on typewriters; an important subtlety is that these were based on mechanical typewriters, not electric typewriters. [26] Mechanical typewriters followed the standard set by the Remington No. 2 (1878), the first typewriter with a shift key, and the shifted values of 23456789- were "#$%_&'()  early typewriters omitted 0 and 1, using O (capital letter o) and l (lowercase letter L) instead, but 1! and 0) pairs became standard once 0 and 1 became common. Thus, in ASCII !"#$% were placed in the second stick, [lower-alpha 1] [12] positions 1–5, corresponding to the digits 1–5 in the adjacent stick. [lower-alpha 1] [12] The parentheses could not correspond to 9 and 0, however, because the place corresponding to 0 was taken by the space character. This was accommodated by removing _ (underscore) from 6 and shifting the remaining characters, which corresponded to many European typewriters that placed the parentheses with 8 and 9. This discrepancy from typewriters led to bit-paired keyboards, notably the Teletype Model 33, which used the left-shifted layout corresponding to ASCII, not to traditional mechanical typewriters. Electric typewriters, notably the IBM Selectric (1961), used a somewhat different layout that has become standard on computers  following the IBM PC (1981), especially Model M (1984)  and thus shift values for symbols on modern keyboards do not correspond as closely to the ASCII table as earlier keyboards did. The /? pair also dates to the No. 2, and the ,< .> pairs were used on some keyboards (others, including the No. 2, did not shift , (comma) or . (full stop) so they could be used in uppercase without unshifting). However, ASCII split the ;: pair (dating to No. 2), and rearranged mathematical symbols (varied conventions, commonly -* =+) to :* ;+ -=.

Some common characters were not included, notably ½¼¢, while ^`~ were included as diacritics for international use, and <> for mathematical use, together with the simple line characters \| (in addition to common /). The @ symbol was not used in continental Europe and the committee expected it would be replaced by an accented À in the French variation, so the @ was placed in position 40 hex , right before the letter A. [2] :243

The control codes felt essential for data transmission were the start of message (SOM), end of address (EOA), end of message (EOM), end of transmission (EOT), "who are you?" (WRU), "are you?" (RU), a reserved device control (DC0), synchronous idle (SYNC), and acknowledge (ACK). These were positioned to maximize the Hamming distance between their bit patterns. [2] :243–245

Character order

ASCII-code order is also called ASCIIbetical order. [27] Collation of data is sometimes done in this order rather than "standard" alphabetical order (collating sequence). The main deviations in ASCII order are:

An intermediate order converts uppercase letters to lowercase before comparing ASCII values.

Character groups

Control characters

ASCII reserves the first 32 codes (numbers 0–31 decimal) for control characters: codes originally intended not to represent printable information, but rather to control devices (such as printers) that make use of ASCII, or to provide meta-information about data streams such as those stored on magnetic tape.

For example, character 10 represents the "line feed" function (which causes a printer to advance its paper), and character 8 represents "backspace". RFC   2822 refers to control characters that do not include carriage return, line feed or white space as non-whitespace control characters. [28] Except for the control characters that prescribe elementary line-oriented formatting, ASCII does not define any mechanism for describing the structure or appearance of text within a document. Other schemes, such as markup languages, address page and document layout and formatting.

The original ASCII standard used only short descriptive phrases for each control character. The ambiguity this caused was sometimes intentional, for example where a character would be used slightly differently on a terminal link than on a data stream, and sometimes accidental, for example with the meaning of "delete".

Probably the most influential single device on the interpretation of these characters was the Teletype Model 33 ASR, which was a printing terminal with an available paper tape reader/punch option. Paper tape was a very popular medium for long-term program storage until the 1980s, less costly and in some ways less fragile than magnetic tape. In particular, the Teletype Model 33 machine assignments for codes 17 (Control-Q, DC1, also known as XON), 19 (Control-S, DC3, also known as XOFF), and 127 (Delete) became de facto standards. The Model 33 was also notable for taking the description of Control-G (code 7, BEL, meaning audibly alert the operator) literally, as the unit contained an actual bell which it rang when it received a BEL character. Because the keytop for the O key also showed a left-arrow symbol (from ASCII-1963, which had this character instead of underscore), a noncompliant use of code 15 (Control-O, Shift In) interpreted as "delete previous character" was also adopted by many early timesharing systems but eventually became neglected.

When a Teletype 33 ASR equipped with the automatic paper tape reader received a Control-S (XOFF, an abbreviation for transmit off), it caused the tape reader to stop; receiving Control-Q (XON, "transmit on") caused the tape reader to resume. This technique became adopted by several early computer operating systems as a "handshaking" signal warning a sender to stop transmission because of impending overflow; it persists to this day in many systems as a manual output control technique. On some systems Control-S retains its meaning but Control-Q is replaced by a second Control-S to resume output. The 33 ASR also could be configured to employ Control-R (DC2) and Control-T (DC4) to start and stop the tape punch; on some units equipped with this function, the corresponding control character lettering on the keycap above the letter was TAPE and TAPE respectively. [29]

The Teletype could not move the head backwards, so it did not put a key on the keyboard to send a BS (backspace). Instead there was a key marked RUB OUT that sent code 127 (DEL). The purpose of this key was to erase mistakes in a hand-typed paper tape: the operator had to push a button on the tape punch to back it up, then type the rubout, which punched all holes and replaced the mistake with a character that was intended to be ignored. [30] Teletypes were commonly used for the less-expensive computers from Digital Equipment Corporation, so these systems had to use the available key and thus the DEL code to erase the previous character. [31] [32] Because of this, DEC video terminals (by default) sent the DEL code for the key marked "Backspace" while the key marked "Delete" sent an escape sequence, while many other terminals sent BS for the Backspace key. The Unix terminal driver could only use one code to erase the previous character, this could be set to BS or DEL, but not both, resulting in a long period of annoyance where users had to correct it depending on what terminal they were using (shells that allow line editing, such as ksh, bash, and zsh, understand both). The assumption that no key sent a BS caused Control+H to be used for other purposes, such as the "help" prefix command in GNU Emacs. [33]

Many more of the control codes have been given meanings quite different from their original ones. The "escape" character (ESC, code 27), for example, was intended originally to allow sending other control characters as literals instead of invoking their meaning. This is the same meaning of "escape" encountered in URL encodings, C language strings, and other systems where certain characters have a reserved meaning. Over time this meaning has been co-opted and has eventually been changed. In modern use, an ESC sent to the terminal usually indicates the start of a command sequence usually in the form of a so-called "ANSI escape code" (or, more properly, a "Control Sequence Introducer") from ECMA-48 (1972) and its successors, beginning with ESC followed by a "[" (left-bracket) character. An ESC sent from the terminal is most often used as an out-of-band character used to terminate an operation, as in the TECO and vi text editors. In graphical user interface (GUI) and windowing systems, ESC generally causes an application to abort its current operation or to exit (terminate) altogether.

The inherent ambiguity of many control characters, combined with their historical usage, created problems when transferring "plain text" files between systems. The best example of this is the newline problem on various operating systems. Teletype machines required that a line of text be terminated with both "Carriage Return" (which moves the printhead to the beginning of the line) and "Line Feed" (which advances the paper one line without moving the printhead). The name "Carriage Return" comes from the fact that on a manual typewriter the carriage holding the paper moved while the position where the typebars struck the ribbon remained stationary. The entire carriage had to be pushed (returned) to the right in order to position the left margin of the paper for the next line.

DEC operating systems (OS/8, RT-11, RSX-11, RSTS, TOPS-10, etc.) used both characters to mark the end of a line so that the console device (originally Teletype machines) would work. By the time so-called "glass TTYs" (later called CRTs or terminals) came along, the convention was so well established that backward compatibility necessitated continuing the convention. When Gary Kildall created CP/M he was inspired by some command line interface conventions used in DEC's RT-11. Until the introduction of PC DOS in 1981, IBM had no hand in this because their 1970s operating systems used EBCDIC instead of ASCII and they were oriented toward punch-card input and line printer output on which the concept of carriage return was meaningless. IBM's PC DOS (also marketed as MS-DOS by Microsoft) inherited the convention by virtue of being loosely based on CP/M, [34] and Windows inherited it from MS-DOS.

Unfortunately, requiring two characters to mark the end of a line introduces unnecessary complexity and questions as to how to interpret each character when encountered alone. To simplify matters plain text data streams, including files, on Multics [35] used line feed (LF) alone as a line terminator. Unix and Unix-like systems, and Amiga systems, adopted this convention from Multics. The original Macintosh OS, Apple DOS, and ProDOS, on the other hand, used carriage return (CR) alone as a line terminator; however, since Apple replaced these operating systems with the Unix-based macOS operating system, they now use line feed (LF) as well. The Radio Shack TRS-80 also used a lone CR to terminate lines.

Computers attached to the ARPANET included machines running operating systems such as TOPS-10 and TENEX using CR-LF line endings, machines running operating systems such as Multics using LF line endings, and machines running operating systems such as OS/360 that represented lines as a character count followed by the characters of the line and that used EBCDIC rather than ASCII. The Telnet protocol defined an ASCII "Network Virtual Terminal" (NVT), so that connections between hosts with different line-ending conventions and character sets could be supported by transmitting a standard text format over the network. Telnet used ASCII along with CR-LF line endings, and software using other conventions would translate between the local conventions and the NVT. [36] The File Transfer Protocol adopted the Telnet protocol, including use of the Network Virtual Terminal, for use when transmitting commands and transferring data in the default ASCII mode. [37] [38] This adds complexity to implementations of those protocols, and to other network protocols, such as those used for E-mail and the World Wide Web, on systems not using the NVT's CR-LF line-ending convention. [39] [40]

The PDP-6 monitor, [31] and its PDP-10 successor TOPS-10, [32] used Control-Z (SUB) as an end-of-file indication for input from a terminal. Some operating systems such as CP/M tracked file length only in units of disk blocks and used Control-Z to mark the end of the actual text in the file. [41] For these reasons, EOF, or end-of-file, was used colloquially and conventionally as a three-letter acronym for Control-Z instead of SUBstitute. The end-of-text code (ETX), also known as Control-C, was inappropriate for a variety of reasons, while using Z as the control code to end a file is analogous to it ending the alphabet and serves as a very convenient mnemonic aid. A historically common and still prevalent convention uses the ETX code convention to interrupt and halt a program via an input data stream, usually from a keyboard.

In C library and Unix conventions, the null character is used to terminate text strings; such null-terminated strings can be known in abbreviation as ASCIZ or ASCIIZ, where here Z stands for "zero".

Binary Oct Dec Hex Abbreviation [lower-alpha 2] [lower-alpha 3] [lower-alpha 4] Name (1967)
196319651967
000 0000000000NULLNUL ^@ \0 Null
000 0001001101SOMSOH ^A Start of Heading
000 0010002202EOASTX ^B Start of Text
000 0011003303EOMETX ^C End of Text
000 0100004404EOT ^D End of Transmission
000 0101005505WRUENQ ^E Enquiry
000 0110006606RUACK ^F Acknowledgement
000 0111007707BELLBEL ^G \a Bell
000 1000010808FE0BS ^H \b Backspace [lower-alpha 5] [lower-alpha 6]
000 1001011909HT/SKHT ^I \t Horizontal Tab [lower-alpha 7]
000 1010012100ALF ^J \n Line Feed
000 1011013110BVTABVT ^K \v Vertical Tab
000 1100014120CFF ^L \f Form Feed
000 1101015130DCR ^M \r Carriage Return [lower-alpha 8]
000 1110016140ESO ^N Shift Out
000 1111017150FSI ^O Shift In
001 00000201610DC0DLE ^P Data Link Escape
001 00010211711DC1 ^Q Device Control 1 (often XON)
001 00100221812DC2 ^R Device Control 2
001 00110231913DC3 ^S Device Control 3 (often XOFF)
001 01000242014DC4 ^T Device Control 4
001 01010252115ERRNAK ^U Negative Acknowledgement
001 01100262216SYNCSYN ^V Synchronous Idle
001 01110272317LEMETB ^W End of Transmission Block
001 10000302418S0CAN ^X Cancel
001 10010312519S1EM ^Y End of Medium
001 1010032261AS2SSSUB ^Z Substitute
001 1011033271BS3ESC^[ \e [lower-alpha 9] Escape [lower-alpha 10]
001 1100034281CS4FS ^\ File Separator
001 1101035291DS5GS^] Group Separator
001 1110036301ES6RS^^ [lower-alpha 11] Record Separator
001 1111037311FS7US^_ Unit Separator
111 11111771277FDEL ^? Delete [lower-alpha 12] [lower-alpha 6]

Other representations might be used by specialist equipment, for example ISO 2047 graphics or hexadecimal numbers.

Printable characters

Codes 20 hex to 7E hex , known as the printable characters, represent letters, digits, punctuation marks, and a few miscellaneous symbols. There are 95 printable characters in total. [lower-alpha 13]

Code 20 hex , the "space" character, denotes the space between words, as produced by the space bar of a keyboard. Since the space character is considered an invisible graphic (rather than a control character) [2] :223 [42] it is listed in the table below instead of in the previous section.

Code 7F hex corresponds to the non-printable "delete" (DEL) control character and is therefore omitted from this chart; it is covered in the previous section's chart. Earlier versions of ASCII used the up arrow instead of the caret (5E hex ) and the left arrow instead of the underscore (5F hex ). [5] [43]

Binary Oct Dec Hex Glyph
196319651967
010 00000403220  space
010 00010413321 !
010 00100423422 "
010 00110433523 #
010 01000443624 $
010 01010453725 %
010 01100463826 &
010 01110473927 '
010 10000504028 (
010 10010514129 )
010 1010052422A *
010 1011053432B +
010 1100054442C ,
010 1101055452D -
010 1110056462E .
010 1111057472F /
011 00000604830 0
011 00010614931 1
011 00100625032 2
011 00110635133 3
011 01000645234 4
011 01010655335 5
011 01100665436 6
011 01110675537 7
011 10000705638 8
011 10010715739 9
011 1010072583A :
011 1011073593B ;
011 1100074603C <
011 1101075613D =
011 1110076623E >
011 1111077633F ?
100 00001006440 @ ` @
100 00011016541 A
100 00101026642 B
100 00111036743 C
100 01001046844 D
100 01011056945 E
100 01101067046 F
100 01111077147 G
100 10001107248 H
100 10011117349 I
100 1010112744A J
100 1011113754B K
100 1100114764C L
100 1101115774D M
100 1110116784E N
100 1111117794F O
101 00001208050 P
101 00011218151 Q
101 00101228252 R
101 00111238353 S
101 01001248454 T
101 01011258555 U
101 01101268656 V
101 01111278757 W
101 10001308858 X
101 10011318959 Y
101 1010132905A Z
101 1011133915B [
101 1100134925C \ ~ \
101 1101135935D ]
101 1110136945E ^
101 1111137955F _
110 00001409660 @ `
110 00011419761 a
110 00101429862 b
110 00111439963 c
110 010014410064 d
110 010114510165 e
110 011014610266 f
110 011114710367 g
110 100015010468 h
110 100115110569 i
110 10101521066A j
110 10111531076B k
110 11001541086C l
110 11011551096D m
110 11101561106E n
110 11111571116F o
111 000016011270 p
111 000116111371 q
111 001016211472 r
111 001116311573 s
111 010016411674 t
111 010116511775 u
111 011016611876 v
111 011116711977 w
111 100017012078 x
111 100117112179 y
111 10101721227A z
111 10111731237B {
111 11001741247C ACK ¬ |
111 11011751257D }
111 11101761267E ESC | ~

Character set

Points which represented a different character in previous versions (the 1963 version and/or the 1965 draft) are shown boxed. Points assigned since the 1963 version but otherwise unchanged are shown lightly shaded relative to their legend colours.

ASCII (1977/1986)
_0_1_2_3_4_5_6_7_8_9_A_B_C_D_E_F
0_
0
NUL
0000
SOH
0001
STX
0002
ETX
0003
EOT
0004
ENQ
0005
ACK
0006
BEL
0007
BS
0008
HT
0009
LF
000A
VT
000B
FF
000C
CR
000D
SO
000E
SI
000F
1_
16
DLE
0010
DC1
0011
DC2
0012
DC3
0013
DC4
0014
NAK
0015
SYN
0016
ETB
0017
CAN
0018
EM
0019
SUB
001A
ESC
001B
FS
001C
GS
001D
RS
001E
US
001F
2_
32
SP
0020
!
0021
"
0022
#
0023
$
0024
%
0025
&
0026
'
0027
(
0028
)
0029
*
002A
+
002B
,
002C
-
002D
.
002E
/
002F
3_
48
0
0030
1
0031
2
0032
3
0033
4
0034
5
0035
6
0036
7
0037
8
0038
9
0039
:
003A
;
003B
<
003C
=
003D
>
003E
?
003F
4_
64
@
0040
A
0041
B
0042
C
0043
D
0044
E
0045
F
0046
G
0047
H
0048
I
0049
J
004A
K
004B
L
004C
M
004D
N
004E
O
004F
5_
80
P
0050
Q
0051
R
0052
S
0053
T
0054
U
0055
V
0056
W
0057
X
0058
Y
0059
Z
005A
[
005B
\
005C
]
005D
^
005E
_
005F
6_
96
`
0060
a
0061
b
0062
c
0063
d
0064
e
0065
f
0066
g
0067
h
0068
i
0069
j
006A
k
006B
l
006C
m
006D
n
006E
o
006F
7_
112
p
0070
q
0071
r
0072
s
0073
t
0074
u
0075
v
0076
w
0077
x
0078
y
0079
z
007A
{
007B
|
007C
}
007D
~
007E
DEL
007F

  Letter  Number  Punctuation  Symbol   Other   Undefined  Character changed from 1963 version and/or 1965 draft

Use

ASCII was first used commercially during 1963 as a seven-bit teleprinter code for American Telephone & Telegraph's TWX (TeletypeWriter eXchange) network. TWX originally used the earlier five-bit ITA2, which was also used by the competing Telex teleprinter system. Bob Bemer introduced features such as the escape sequence. [4] His British colleague Hugh McGregor Ross helped to popularize this work  according to Bemer, "so much so that the code that was to become ASCII was first called the Bemer–Ross Code in Europe". [44] Because of his extensive work on ASCII, Bemer has been called "the father of ASCII". [45]

On March 11, 1968, U.S. President Lyndon B. Johnson mandated that all computers purchased by the United States Federal Government support ASCII, stating: [46] [47] [48]

I have also approved recommendations of the Secretary of Commerce [ Luther H. Hodges ] regarding standards for recording the Standard Code for Information Interchange on magnetic tapes and paper tapes when they are used in computer operations. All computers and related equipment configurations brought into the Federal Government inventory on and after July 1, 1969, must have the capability to use the Standard Code for Information Interchange and the formats prescribed by the magnetic tape and paper tape standards when these media are used.

ASCII was the most common character encoding on the World Wide Web until December 2007, when UTF-8 encoding surpassed it; UTF-8 is backward compatible with ASCII. [49] [50] [51]

Variants and derivations

As computer technology spread throughout the world, different standards bodies and corporations developed many variations of ASCII to facilitate the expression of non-English languages that used Roman-based alphabets. One could class some of these variations as "ASCII extensions", although some misuse that term to represent all variants, including those that do not preserve ASCII's character-map in the 7-bit range. Furthermore, the ASCII extensions have also been mislabelled as ASCII.

7-bit codes

From early in its development, [52] ASCII was intended to be just one of several national variants of an international character code standard.

Other international standards bodies have ratified character encodings such as ISO 646 (1967) that are identical or nearly identical to ASCII, with extensions for characters outside the English alphabet and symbols used outside the United States, such as the symbol for the United Kingdom's pound sterling (£). Almost every country needed an adapted version of ASCII, since ASCII suited the needs of only the US and a few other countries. For example, Canada had its own version that supported French characters.

Many other countries developed variants of ASCII to include non-English letters (e.g. é, ñ, ß, Ł), currency symbols (e.g. £, ¥), etc. See also YUSCII (Yugoslavia).

It would share most characters in common, but assign other locally useful characters to several code points reserved for "national use". However, the four years that elapsed between the publication of ASCII-1963 and ISO's first acceptance of an international recommendation during 1967 [53] caused ASCII's choices for the national use characters to seem to be de facto standards for the world, causing confusion and incompatibility once other countries did begin to make their own assignments to these code points.

ISO/IEC 646, like ASCII, is a 7-bit character set. It does not make any additional codes available, so the same code points encoded different characters in different countries. Escape codes were defined to indicate which national variant applied to a piece of text, but they were rarely used, so it was often impossible to know what variant to work with and, therefore, which character a code represented, and in general, text-processing systems could cope with only one variant anyway.

Because the bracket and brace characters of ASCII were assigned to "national use" code points that were used for accented letters in other national variants of ISO/IEC 646, a German, French, or Swedish, etc. programmer using their national variant of ISO/IEC 646, rather than ASCII, had to write, and thus read, something such as

ä aÄiÜ = 'Ön'; ü

instead of

{ a[i] = '\n'; }

C trigraphs were created to solve this problem for ANSI C, although their late introduction and inconsistent implementation in compilers limited their use. Many programmers kept their computers on US-ASCII, so plain-text in Swedish, German etc. (for example, in e-mail or Usenet) contained "{, }" and similar variants in the middle of words, something those programmers got used to. For example, a Swedish programmer mailing another programmer asking if they should go for lunch, could get "N{ jag har sm|rg}sar" as the answer, which should be "Nä jag har smörgåsar" meaning "No I've got sandwiches".

8-bit codes

Eventually, as 8-, 16- and 32-bit (and later 64-bit) computers began to replace 12-, 18- and 36-bit computers as the norm, it became common to use an 8-bit byte to store each character in memory, providing an opportunity for extended, 8-bit relatives of ASCII. In most cases these developed as true extensions of ASCII, leaving the original character-mapping intact, but adding additional character definitions after the first 128 (i.e., 7-bit) characters.

Encodings include ISCII (India), VISCII (Vietnam). Although these encodings are sometimes referred to as ASCII, true ASCII is defined strictly only by the ANSI standard.

Most early home computer systems developed their own 8-bit character sets containing line-drawing and game glyphs, and often filled in some or all of the control characters from 0 to 31 with more graphics. Kaypro CP/M computers used the "upper" 128 characters for the Greek alphabet.

The PETSCII code Commodore International used for their 8-bit systems is probably unique among post-1970 codes in being based on ASCII-1963, instead of the more common ASCII-1967, such as found on the ZX Spectrum computer. Atari 8-bit computers and Galaksija computers also used ASCII variants.

The IBM PC defined code page 437, which replaced the control characters with graphic symbols such as smiley faces, and mapped additional graphic characters to the upper 128 positions. Operating systems such as DOS supported these code pages, and manufacturers of IBM PCs supported them in hardware. Digital Equipment Corporation developed the Multinational Character Set (DEC-MCS) for use in the popular VT220 terminal as one of the first extensions designed more for international languages than for block graphics. The Macintosh defined Mac OS Roman and Postscript also defined a set, both of these contained both international letters and typographic punctuation marks instead of graphics, more like modern character sets.

The ISO/IEC 8859 standard (derived from the DEC-MCS) finally provided a standard that most systems copied (at least as accurately as they copied ASCII, but with many substitutions). A popular further extension designed by Microsoft, Windows-1252 (often mislabeled as ISO-8859-1), added the typographic punctuation marks needed for traditional text printing. ISO-8859-1, Windows-1252, and the original 7-bit ASCII were the most common character encodings until 2008 when UTF-8 became more common. [50]

ISO/IEC 4873 introduced 32 additional control codes defined in the 80–9F hexadecimal range, as part of extending the 7-bit ASCII encoding to become an 8-bit system. [54]

Unicode

Unicode and the ISO/IEC 10646 Universal Character Set (UCS) have a much wider array of characters and their various encoding forms have begun to supplant ISO/IEC 8859 and ASCII rapidly in many environments. While ASCII is limited to 128 characters, Unicode and the UCS support more characters by separating the concepts of unique identification (using natural numbers called code points) and encoding (to 8-, 16- or 32-bit binary formats, called UTF-8, UTF-16 and UTF-32).

ASCII was incorporated into the Unicode (1991) character set as the first 128 symbols, so the 7-bit ASCII characters have the same numeric codes in both sets. This allows UTF-8 to be backward compatible with 7-bit ASCII, as a UTF-8 file containing only ASCII characters is identical to an ASCII file containing the same sequence of characters. Even more importantly, forward compatibility is ensured as software that recognizes only 7-bit ASCII characters as special and does not alter bytes with the highest bit set (as is often done to support 8-bit ASCII extensions such as ISO-8859-1) will preserve UTF-8 data unchanged. [55]

See also

Notes

  1. 1 2 3 4 5 The 128 characters of the 7-bit ASCII character set are divided into eight 16-character groups called sticks 0–7, associated with the three most-significant bits. [12] Depending on the horizontal or vertical representation of the character map, sticks correspond with either table rows or columns.
  2. The Unicode characters from the area U+2400 to U+2421 reserved for representing control characters when it is necessary to print or display them rather than have them perform their intended function. Some browsers may not display these properly.
  3. Caret notation is often used to represent control characters on a terminal. On most text terminals, holding down the Ctrl key while typing the second character will type the control character. Sometimes the shift key is not needed, for instance ^@ may be typable with just Ctrl and 2.
  4. Character escape sequences in C programming language and many other languages influenced by it, such as Java and Perl (though not all implementations necessarily support all escape sequences).
  5. The Backspace character can also be entered by pressing the ← Backspace key on some systems.
  6. 1 2 The ambiguity of Backspace is due to early terminals designed assuming the main use of the keyboard would be to manually punch paper tape while not connected to a computer. To delete the previous character, one had to back up the paper tape punch, which for mechanical and simplicity reasons was a button on the punch itself and not the keyboard, then type the rubout character. They therefore placed a key producing rubout at the location used on typewriters for backspace. When systems used these terminals and provided command-line editing, they had to use the "rubout" code to perform a backspace, and often did not interpret the backspace character (they might echo "^H" for backspace). Other terminals not designed for paper tape made the key at this location produce Backspace, and systems designed for these used that character to back up. Since the delete code often produced a backspace effect, this also forced terminal manufacturers to make any Delete key produce something other than the Delete character.
  7. The Tab character can also be entered by pressing the Tab ↹ key on most systems.
  8. The Carriage Return character can also be entered by pressing the ↵ Enter or Return key on most systems.
  9. The \e escape sequence is not part of ISO C and many other language specifications. However, it is understood by several compilers, including GCC.
  10. The Escape character can also be entered by pressing the Esc key on some systems.
  11. ^^ means Ctrl+^ (pressing the "Ctrl" and caret keys).
  12. The Delete character can sometimes be entered by pressing the ← Backspace key on some systems.
  13. Printed out, the characters are:
     !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

Related Research Articles

ASCII art art genre

ASCII art is a graphic design technique that uses computers for presentation and consists of pictures pieced together from the 95 printable characters defined by the ASCII Standard from 1963 and ASCII compliant character sets with proprietary extended characters. The term is also loosely used to refer to text based visual art in general. ASCII art can be created with any text editor, and is often used with free-form languages. Most examples of ASCII art require a fixed-width font such as Courier for presentation.

In computing and telecommunication, a control character or non-printing character (NPC) is a code point in a character set, that does not represent a written symbol. They are used as in-band signaling to cause effects other than the addition of a symbol to the text. All other characters are mainly printing, printable, or graphic characters, except perhaps for the "space" character.

Extended Binary Coded Decimal Interchange Code is an eight-bit character encoding used mainly on IBM mainframe and IBM midrange computer operating systems. It descended from the code used with punched cards and the corresponding six-bit binary-coded decimal code used with most of IBM's computer peripherals of the late 1950s and early 1960s. It is supported by various non-IBM platforms, such as Fujitsu-Siemens' BS2000/OSD, OS-IV, MSP, and MSP-EX, the SDS Sigma series, Unisys VS/9, Burroughs MCP and ICL VME.

ISO/IEC 8859-1 character encoding

ISO/IEC 8859-1:1998, Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet No. 1, is part of the ISO/IEC 8859 series of ASCII-based standard character encodings, first edition published in 1987. ISO 8859-1 encodes what it refers to as "Latin alphabet no. 1", consisting of 191 characters from the Latin script. This character-encoding scheme is used throughout the Americas, Western Europe, Oceania, and much of Africa. It is also commonly used in most standard romanizations of East-Asian languages. It is the basis for most popular 8-bit character sets and the first block of characters in Unicode.

In ISO/IEC 646 and related standards including ISO 8859 and Unicode, a graphic character is any character intended to be written, printed, or otherwise displayed in a form that can be read by humans. In other words, it is any encoded character that is associated with one or more glyphs.

The backslash (\) is a typographical mark used mainly in computing and is the mirror image of the common slash (/). It is sometimes called a hack, whack, escape, reverse slash, slosh, downwhack, backslant, backwhack, bash, reverse slant, and reversed virgule. In Unicode and ASCII it is encoded at U+005C\REVERSE SOLIDUS (92decimal).

ISO/IEC 646 is the name of a set of ISO standards, described as Information technology — ISO 7-bit coded character set for information interchange and developed in cooperation with ASCII at least since 1964. Since its first edition in 1967 it has specified a 7-bit character code from which several national standards are derived.

A text file is a kind of computer file that is structured as a sequence of lines of electronic text. A text file exists stored as data within a computer file system. In operating systems such as CP/M and MS-DOS, where the operating system does not keep track of the file size in bytes, the end of a text file is denoted by placing one or more special characters, known as an end-of-file marker, as padding after the last line in a text file. On modern operating systems such as Microsoft Windows and Unix-like systems, text files do not contain any special EOF character, because file systems on those operating systems keep track of the file size in bytes. There are for most text files a need to have end-of-line delimiters, which are done in a few different ways depending on operating system. Some operating systems with record-orientated file systems may not use new line delimiters and will primarily store text files with lines separated as fixed or variable length records.

The null character is a control character with the value zero. It is present in many character sets, including ISO/IEC 646, the C0 control code, the Universal Coded Character Set, and EBCDIC. It is available in nearly all mainstream programming languages. It is often abbreviated as NUL.

Alt key computer key

The Alt key on a computer keyboard is used to change (alternate) the function of other pressed keys. Thus, the Alt key is a modifier key, used in a similar fashion to the Shift key. For example, simply pressing "A" will type the letter a, but if you hold down either Alt key while pressing A, the computer will perform an Alt+A function, which varies from program to program. The international standard ISO/IEC 9995-2 calls it Alternate key. The key is located on either side of the Space bar, but in non-US PC keyboard layouts, rather than a second Alt key, there is an 'Alt Gr' key to the right of the space bar. Both placements are in accordance with ISO/IEC 9995-2.

Backspace keyboard key

Backspace is the keyboard key that originally pushed the typewriter carriage one position backwards, and in modern computer systems moves the display cursor one position backwards, deletes the character at that position, and shifts back the text after that position by one position.

A bell code is a device control code originally sent to ring a small electromechanical bell on tickers and other teleprinters and teletypewriters to alert operators at the other end of the line, often of an incoming message. Though tickers punched the bell codes into their tapes, printers generally do not print a character when the bell code is received. Bell codes are usually represented by the label "BEL". They have been used since 1870.

The currency sign (¤) is a character used to denote an unspecified currency. It can be described as a circle the size of a lowercase character with four short radiating arms at 45° (NE), 135° (SE), 225°, (SW) and 315° (NW). It is raised slightly above the baseline. It is represented in Unicode as U+00A4¤CURRENCY SIGN, \textcurrency in LaTeX. The character is sometimes called scarab.

The C0 and C1 control code or control character sets define control codes for use in text by computer systems that use ASCII and derivatives of ASCII. The codes represent additional information about the text, such as the position of a cursor, an instruction to start a new line, or a message that the text has been received.

Windows code pages are sets of characters or code pages used in Microsoft Windows from the 1980s and 1990s. Windows code pages were gradually superseded when Unicode was implemented in Windows, although they are still supported both within Windows and other platforms.

A six-bit character code is a character encoding designed for use on computers with word lengths a multiple of 6. Six bits can only encode 64 distinct characters, so these codes generally include only the upper-case letters, the numerals, some punctuation characters, and sometimes control characters. Such codes with additional parity bit were a natural way of storing data on 7-track magnetic tape.

In computing, the delete character is the last character in the ASCII repertoire, with the code 127 (decimal). Not a graphic character but a control character, it is denoted as ^? in caret notation and has a graphic representation of ␡ in Unicode.

Extended ASCII eight-bit or larger character encodings that include the standard seven-bit ASCII characters as well as others

Extended ASCII character encodings are eight-bit or larger encodings that include the standard seven-bit ASCII characters, plus additional characters. Using the term "extended ASCII" on its own is sometimes criticized, because it can be mistakenly interpreted to mean that the ASCII standard has been updated to include more than 128 characters or that the term unambiguously identifies a single encoding, neither of which is the case.

The ISO basic Latin alphabet is a Latin-script alphabet and consists of two sets of 26 letters, codified in various national and international standards and used widely in international communication. They are the same letters that comprise the English alphabet.

References

  1. ANSI (December 1, 1975). ISO-IR-006: ASCII Graphic character set (PDF). ITSCJ/IPSJ.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Mackenzie, Charles E. (1980). Coded Character Sets, History and Development (PDF). The Systems Programming Series (1 ed.). Addison-Wesley Publishing Company, Inc. pp. 6, 66, 211, 215, 217, 220, 223, 228, 236–238, 243–245, 247–253, 423, 425–428, 435–439. ISBN   978-0-201-14460-4. LCCN   77-90165. Archived (PDF) from the original on May 26, 2016. Retrieved August 25, 2019.
  3. "Character Sets". Internet Assigned Numbers Authority (IANA). May 14, 2007. Retrieved August 25, 2019.
  4. 1 2 Brandel, Mary (July 6, 1999). "1963: The Debut of ASCII". CNN. Archived from the original on June 17, 2013. Retrieved April 14, 2008.
  5. 1 2 3 4 "American Standard Code for Information Interchange, ASA X3.4-1963". American Standards Association (ASA). June 17, 1963. Archived from the original on September 28, 2018. Retrieved September 28, 2018.
  6. 1 2 3 "USA Standard Code for Information Interchange, USAS X3.4-1967". United States of America Standards Institute (USASI). July 7, 1967.Cite journal requires |journal= (help)
  7. Jennings, Thomas Daniel (April 20, 2016) [1999]. "An annotated history of some character codes or ASCII: American Standard Code for Information Infiltration". World Power Systems (WPS). Archived from the original on September 28, 2018. Retrieved September 28, 2018.
  8. 1 2 3 "American National Standard for Information Systems — Coded Character Sets — 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII), ANSI X3.4-1986". American National Standards Institute (ANSI). March 26, 1986.Cite journal requires |journal= (help)
  9. Shirley, R. (August 2007), Internet Security Glossary, Version 2, RFC   4949 , archived from the original on June 13, 2016, retrieved June 13, 2016
  10. Maini, Anil Kumar (2007). Digital Electronics: Principles, Devices and Applications. John Wiley and Sons. p. 28. ISBN   978-0-470-03214-5. In addition, it defines codes for 33 nonprinting, mostly obsolete control characters that affect how the text is processed.
  11. Bukstein, Ed (July 1964). "Binary Computer Codes and ASCII". Electronics World . 72 (1): 28–29. Archived from the original on March 3, 2016. Retrieved May 22, 2016.
  12. 1 2 3 4 5 6 Bemer, Robert William (1980). "Chapter 1: Inside ASCII" (PDF). General Purpose Software. Best of Interface Age. 2. Portland, OR, USA: dilithium Press. pp. 1–50. ISBN   978-0-918398-37-6. LCCN   79-67462. Archived from the original on August 27, 2016. Retrieved August 27, 2016, from:
  13. Brief Report: Meeting of CCITT Working Party on the New Telegraph Alphabet, May 13–15, 1963.
  14. Report of ISO/TC/97/SC 2 – Meeting of October 29–31, 1963.
  15. Report on Task Group X3.2.4, June 11, 1963, Pentagon Building, Washington, DC.
  16. Report of Meeting No. 8, Task Group X3.2.4, December 17 and 18, 1963
  17. 1 2 3 Winter, Dik T. (2010) [2003]. "US and International standards: ASCII". Archived from the original on January 16, 2010.
  18. 1 2 3 4 5 6 7 Salste, Tuomas (January 2016). "7-bit character sets: Revisions of ASCII". Aivosto Oy. urn:nbn:fi-fe201201011004 . Archived from the original on June 13, 2016. Retrieved June 13, 2016.
  19. "Information". Scientific American (special edition). 215 (3). September 1966. JSTOR   e24931041.
  20. Korpela, Jukka K. (March 14, 2014) [2006-06-07]. Unicode Explained – Internationalize Documents, Programs, and Web Sites (2nd release of 1st ed.). O'Reilly Media, Inc. p. 118. ISBN   978-0-596-10121-3.
  21. ANSI INCITS 4-1986 (R2007): American National Standard for Information Systems – Coded Character Sets – 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII) (PDF), 2007 [1986], archived (PDF) from the original on February 7, 2014, retrieved June 12, 2016
  22. Bit Sequencing of the American National Standard Code for Information Interchange in Serial-by-Bit Data Transmission, American National Standards Institute (ANSI), 1966, X3.15-1966
  23. "BruXy: Radio Teletype communication". October 10, 2005. Archived from the original on April 12, 2016. Retrieved May 9, 2016. The transmitted code use International Telegraph Alphabet No. 2 (ITA-2) which was introduced by CCITT in 1924.
  24. 1 2 Smith, Gil (2001). "Teletype Communication Codes" (PDF). Baudot.net. Archived (PDF) from the original on August 20, 2008. Retrieved July 11, 2008.
  25. Sawyer, Stanley A.; Krantz, Steven George (1995). A TeX Primer for Scientists. CRC Press, LLC. p. 13. Bibcode:1995tps..book.....S. ISBN   978-0-8493-7159-2. Archived from the original on December 22, 2016. Retrieved October 29, 2016.
  26. Savard, John J. G. "Computer Keyboards". Archived from the original on September 24, 2014. Retrieved August 24, 2014.
  27. "ASCIIbetical definition". PC Magazine . Archived from the original on March 9, 2013. Retrieved April 14, 2008.
  28. Resnick, P. (April 2001), Internet Message Format, RFC   2822 , archived from the original on June 13, 2016, retrieved June 13, 2016 (NB. NO-WS-CTL.)
  29. McConnell, Robert; Haynes, James; Warren, Richard. "Understanding ASCII Codes". Archived from the original on February 27, 2014. Retrieved May 11, 2014.
  30. Barry Margolin (May 29, 2014). "Re: editor and word processor history (was: Re: RTF for emacs)". help-gnu-emacs (Mailing list). Archived from the original on July 14, 2014. Retrieved July 11, 2014.
  31. 1 2 "PDP-6 Multiprogramming System Manual" (PDF). Digital Equipment Corporation (DEC). 1965. p. 43. Archived (PDF) from the original on July 14, 2014. Retrieved July 10, 2014.
  32. 1 2 "PDP-10 Reference Handbook, Book 3, Communicating with the Monitor" (PDF). Digital Equipment Corporation (DEC). 1969. p. 5-5. Archived (PDF) from the original on November 15, 2011. Retrieved July 10, 2014.
  33. "Help - GNU Emacs Manual". Archived from the original on July 11, 2018. Retrieved July 11, 2018.
  34. Tim Paterson (August 8, 2007). "Is DOS a Rip-Off of CP/M?". DosMan Drivel. Archived from the original on April 20, 2018. Retrieved April 19, 2018.
  35. Ossanna, J. F.; Saltzer, J. H. (November 17–19, 1970). "Technical and human engineering problems in connecting terminals to a time-sharing system" (PDF). Proceedings of the November 17–19, 1970, Fall Joint Computer Conference (FJCC). p. 357: AFIPS Press. pp. 355–362. Archived (PDF) from the original on August 19, 2012. Retrieved January 29, 2013. Using a "new-line" function (combined carriage-return and line-feed) is simpler for both man and machine than requiring both functions for starting a new line; the American National Standard X3.4-1968 permits the line-feed code to carry the new-line meaning.
  36. O'Sullivan, T. (May 19, 1971), TELNET Protocol, Internet Engineering Task Force (IETF), pp. 4–5, RFC   158 , archived from the original on June 13, 2016, retrieved January 28, 2013
  37. Neigus, Nancy J. (August 12, 1973), File Transfer Protocol, Internet Engineering Task Force (IETF), RFC   542 , archived from the original on June 13, 2016, retrieved January 28, 2013
  38. Postel, Jon (June 1980), File Transfer Protocol, Internet Engineering Task Force (IETF), RFC   765 , archived from the original on June 13, 2016, retrieved January 28, 2013
  39. "EOL translation plan for Mercurial". Mercurial. Archived from the original on June 16, 2016. Retrieved June 24, 2017.
  40. Bernstein, Daniel J. "Bare LFs in SMTP". Archived from the original on October 29, 2011. Retrieved January 28, 2013.
  41. CP/M 1.4 Interface Guide (PDF). Digital Research. 1978. p. 10. Archived (PDF) from the original on May 29, 2019. Retrieved October 7, 2017.
  42. Cerf, Vinton Gray (October 16, 1969), ASCII format for Network Interchange, Network Working Group, RFC   20 , archived from the original on June 13, 2016, retrieved June 13, 2016 (NB. Almost identical wording to USAS X3.4-1968 except for the intro.)
  43. Haynes, Jim (January 13, 2015). "First-Hand: Chad is Our Most Important Product: An Engineer's Memory of Teletype Corporation". Engineering and Technology History Wiki (ETHW). Archived from the original on October 31, 2016. Retrieved October 31, 2016. There was the change from 1961 ASCII to 1968 ASCII. Some computer languages used characters in 1961 ASCII such as up arrow and left arrow. These characters disappeared from 1968 ASCII. We worked with Fred Mocking, who by now was in Sales at Teletype, on a type cylinder that would compromise the changing characters so that the meanings of 1961 ASCII were not totally lost. The underscore character was made rather wedge-shaped so it could also serve as a left arrow.
  44. Bemer, Robert William. "Bemer meets Europe (Computer Standards) – Computer History Vignettes". Trailing-edge.com. Archived from the original on October 17, 2013. Retrieved April 14, 2008. (NB. Bemer was employed at IBM at that time.)
  45. "Robert William Bemer: Biography". March 9, 2013. Archived from the original on June 16, 2016.
  46. Johnson, Lyndon Baines (March 11, 1968). "Memorandum Approving the Adoption by the Federal Government of a Standard Code for Information Interchange". The American Presidency Project. Archived from the original on September 14, 2007. Retrieved April 14, 2008.
  47. Richard S. Shuford (December 20, 1996). "Re: Early history of ASCII?". Newsgroup:  alt.folklore.computers. Usenet:   Pine.SUN.3.91.961220100220.13180C-100000@duncan.cs.utk.edu.
  48. Folts, Harold C.; Karp, Harry, eds. (February 1, 1982). Compilation of Data Communications Standards (2nd revised ed.). McGraw-Hill Inc. ISBN   978-0-07-021457-6.
  49. Dubost, Karl (May 6, 2008). "UTF-8 Growth on the Web". W3C Blog. World Wide Web Consortium. Archived from the original on June 16, 2016. Retrieved August 15, 2010.
  50. 1 2 Davis, Mark (May 5, 2008). "Moving to Unicode 5.1". Official Google Blog. Archived from the original on June 16, 2016. Retrieved August 15, 2010.
  51. Davis, Mark (January 28, 2010). "Unicode nearing 50% of the web". Official Google Blog. Archived from the original on June 16, 2016. Retrieved August 15, 2010.
  52. "Specific Criteria", attachment to memo from R. W. Reach, "X3-2 Meeting – September 14 and 15", September 18, 1961
  53. Maréchal, R. (December 22, 1967), ISO/TC 97 – Computers and Information Processing: Acceptance of Draft ISO Recommendation No. 1052
  54. The Unicode Consortium (October 27, 2006). "Chapter 13: Special Areas and Format Characters" (PDF). In Allen, Julie D. (ed.). The Unicode standard, Version 5.0. Upper Saddle River, New Jersey, US: Addison-Wesley Professional. p. 314. ISBN   978-0-321-48091-0 . Retrieved March 13, 2015.
  55. "utf-8(7) – Linux manual page". Man7.org. February 26, 2014. Archived from the original on April 22, 2014. Retrieved April 21, 2014.

Further reading