abohm | |
---|---|
Unit system | CGS-EMU |
Unit of | electrical resistance |
Symbol | abΩ |
Named after | Georg Ohm |
In CGS base units | cm/s |
Conversions | |
1 abΩin ... | ... corresponds to ... |
SI units | 10−9 Ω |
The abohm is the derived unit of electrical resistance in the emu-cgs (centimeter-gram-second) system of units (emu stands for "electromagnetic units"). One abohm corresponds to 10−9 ohms in the SI system of units, which is a nanoohm.
The emu-cgs (or "electromagnetic cgs") units are one of several systems of electromagnetic units within the centimetre gram second system of units; others include esu-cgs, Gaussian units, and Heaviside–Lorentz units. In these other systems, the abohm is not one of the units.
When a current of one abampere (1 abA) flows through a resistance of 1 abohm, the resulting potential difference across the component is one abvolt (1 abV).
The name abohm was introduced by Kennelly in 1903 as a short name for the long name (absolute) electromagnetic cgs unit of resistance that was in use since the adoption of the cgs system in 1875. [1] The abohm was coherent with the emu-cgs system, in contrast to the ohm, the practical unit of resistance that had been adopted too in 1875.
The ampere, often shortened to amp, is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 coulomb (C) moving past a point per second. It is named after French mathematician and physicist André-Marie Ampère (1775–1836), considered the father of electromagnetism along with Danish physicist Hans Christian Ørsted.
The centimetre–gram–second system of units is a variant of the metric system based on the centimetre as the unit of length, the gram as the unit of mass, and the second as the unit of time. All CGS mechanical units are unambiguously derived from these three base units, but there are several different ways in which the CGS system was extended to cover electromagnetism.
The gauss, is a unit of measurement of magnetic induction, also known as magnetic flux density. The unit is part of the Gaussian system of units, which inherited it from the older centimetre–gram–second electromagnetic units (CGS-EMU) system. It was named after the German mathematician and physicist Carl Friedrich Gauss in 1936. One gauss is defined as one maxwell per square centimetre.
The International System of Units, internationally known by the abbreviation SI, is the modern form of the metric system and the world's most widely used system of measurement. Coordinated by the International Bureau of Weights and Measures it is the only system of measurement with official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce.
The volt is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI).
The metric system is a decimal-based system of measurement. The current international standard for the metric system is the International System of Units, in which all units can be expressed in terms of seven base units: the metre (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and candela (Cd). These can be made into larger or smaller units with the use of metric prefixes.
The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). It is equal to the electric charge delivered by a 1 ampere current in 1 second and is defined in terms of the elementary charge e, at about 6.241509×1018 e.
The maxwell is the CGS (centimetre–gram–second) unit of magnetic flux.
The abcoulomb or electromagnetic unit of charge is the derived physical unit of electric charge in the cgs-emu system of units. One abcoulomb is equal to ten coulombs.
The abampere (abA), also called the biot (Bi) after Jean-Baptiste Biot, is the derived electromagnetic unit of electric current in the emu-cgs system of units. One abampere corresponds to ten amperes in the SI system of units. An abampere of current in a circular path of one centimeter radius produces a magnetic field of 2π oersteds at the center of the circle.
The ohm is the unit of electrical resistance in the International System of Units (SI). It is named after German physicist Georg Ohm. Various empirically derived standard units for electrical resistance were developed in connection with early telegraphy practice, and the British Association for the Advancement of Science proposed a unit derived from existing units of mass, length and time, and of a convenient scale for practical work as early as 1861.
Abmho or absiemens is a unit of electrical conductance in the centimetre gram second (CGS-EMU) system of units. It corresponds to one gigasiemens.
The metre, kilogram, second system of units, also known more briefly as MKS units or the MKS system, is a physical system of measurement based on the metre, kilogram, and second (MKS) as base units. Distances are described in terms of metres, mass in terms of kilograms and time in seconds. Derived units are defined using the appropriate combinations, such as velocity in metres per second. Some units have their own names, such as the newton unit of force which is the combination kilogram metre per second squared.
The International Electrical Congress was a series of international meetings, from 1881 to 1904, in the then new field of applied electricity. The first meeting was initiated by the French government, including official national representatives, leading scientists, and others. Subsequent meetings also included official representatives, leading scientists, and others. Primary aims were to develop reliable standards, both in relation to electrical units and electrical apparatus.
The abvolt (abV) is the unit of potential difference in the CGS-EMU system of units. It corresponds to 10−8 volt in the SI system and 1/ccgs statvolt ≈ 3.3356×10−11 statvolt in the CGS-ESU system.
The International System of Electrical and Magnetic Units is an obsolete system of units used for measuring electrical and magnetic quantities. It was proposed as a system of practical international units by unanimous recommendation at the International Electrical Congress, discussed at other Congresses, and finally adopted at the International Conference on Electric Units and Standards in London in 1908. It was rendered obsolete by the inclusion of electromagnetic units in the International System of Units (SI) at the 9th General Conference on Weights and Measures in 1948.
The history of the metric system began during the Age of Enlightenment with measures of length and weight derived from nature, along with their decimal multiples and fractions. The system became the standard of France and Europe within half a century. Other measures with unity ratios were added, and the system went on to be adopted across the world.
The statampere (statA) is the derived electromagnetic unit of electric current in the CGS-ESU and Gaussian systems of units.:278 One statampere corresponds to 10/ccgs ampere ≈ 3.33564×10−10 ampere in the SI system of units.
The statohm is the unit of electrical resistance in the electrostatic system of units which was part of the CGS system of units based upon the centimetre, gram and second.