Abstract logic is a formal system consisting of a class of sentences and a satisfaction relation with specific properties.
In mathematical logic, an abstract logic is a formal system consisting of a class of sentences and a satisfaction relation with specific properties related to occurrence, expansion, isomorphism, renaming and quantification.
Abstract logic may also refer to:
In mathematical logic, abstract algebraic logic is the study of the algebraization of deductive systems arising as an abstraction of the well-known Lindenbaum–Tarski algebra, and how the resulting algebras are related to logical systems.
Abstract Logic is the first collaborative live album by bassist Jonas Hellborg and guitarist Shawn Lane, released in 1995 through Day Eight Music; a remastered and remixed edition, containing a revised track listing and two extra tracks, was reissued through Bardo Records in 2004. For this lineup, they are joined by drummer Kofi Baker.
disambiguation page lists articles associated with the title Abstract logic. If an internal link led you here, you may wish to change the link to point directly to the intended article. | This
Mathematics includes the study of such topics as quantity, structure (algebra), space (geometry), and change. It has no generally accepted definition.
In mathematics, and more specifically in abstract algebra, an algebraic structure on a set A is a collection of finitary operations on A. The set A with this structure is also called an algebra.
In mathematical logic, the Lindenbaum–Tarski algebra of a logical theory T consists of the equivalence classes of sentences of the theory. That is, two sentences are equivalent if the theory T proves that each implies the other. The Lindenbaum–Tarski algebra is thus the quotient algebra obtained by factoring the algebra of formulas by this congruence relation.
Mathematics encompasses a growing variety and depth of subjects over history, and comprehension requires a system to categorize and organize the many subjects into more general areas of mathematics. A number of different classification schemes have arisen, and though they share some similarities, there are differences due in part to the different purposes they serve. In addition, as mathematics continues to be developed, these classification schemes must change as well to account for newly created areas or newly discovered links between different areas. Classification is made more difficult by some subjects, often the most active, which straddle the boundary between different areas.
Joseph Amadee Goguen was a US computer scientist. He was professor of Computer Science at the University of California and University of Oxford and held research positions at IBM and SRI International.
In universal algebra and mathematical logic, a term algebra is a freely generated algebraic structure over a given signature. For example, in a signature consisting of a single binary operation, the term algebra over a set X of variables is exactly the free magma generated by X. Other synonyms for the notion include absolutely free algebra and anarchic algebra.
In mathematical logic, algebraic semantics is a formal semantics based on algebras studied as part of algebraic logic. For example, the modal logic S4 is characterized by the class of topological boolean algebras—that is, boolean algebras with an interior operator. Other modal logics are characterized by various other algebras with operators. The class of boolean algebras characterizes classical propositional logic, and the class of Heyting algebras propositional intuitionistic logic. MV-algebras are the algebraic semantics of Łukasiewicz logic.
Non-classical logics are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is done, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth.
In abstract algebraic logic, a branch of mathematical logic, the Leibniz operator is a tool used to classify deductive systems, which have a precise technical definition, and capture a large number of logics. The Leibniz operator was introduced by Wim Blok and Don Pigozzi, two of the founders of the field, as a means to abstract the well-known Lindenbaum–Tarski process, that leads to the association of Boolean algebras to classical propositional calculus, and make it applicable to as wide a variety of sentential logics as possible. It is an operator that assigns to a given theory of a given sentential logic, perceived as a free algebra with a consequence operation on its universe, the largest congruence on the algebra that is compatible with the theory.
In mathematics, there are many types of algebraic structures which are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.
Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.
Institutional model theory generalizes a large portion of first-order model theory to an arbitrary logical system.
In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables.
Algebra is one of the broad parts of mathematics, together with number theory, geometry and analysis. In its most general form, algebra is the study of mathematical symbols and the rules for manipulating these symbols; it is a unifying thread of almost all of mathematics. It includes everything from elementary equation solving to the study of abstractions such as groups, rings, and fields. The more basic parts of algebra are called elementary algebra; the more abstract parts are called abstract algebra or modern algebra. Elementary algebra is generally considered to be essential for any study of mathematics, science, or engineering, as well as such applications as medicine and economics. Abstract algebra is a major area in advanced mathematics, studied primarily by professional mathematicians.
Mathematics is a field of study that investigates topics including number, space, structure, and change. For more on the relationship between mathematics and science, refer to the article on science.
This is a glossary of terms that are or have been considered areas of study in mathematics.
In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the values of the variables are the truth values true and false, usually denoted 1 and 0 respectively. Instead of elementary algebra where the values of the variables are numbers, and the prime operations are addition and multiplication, the main operations of Boolean algebra are the conjunction and denoted as ∧, the disjunction or denoted as ∨, and the negation not denoted as ¬. It is thus a formalism for describing logical operations in the same way that elementary algebra describes numerical operations.