Adolf Hurwitz

Last updated

Adolf Hurwitz
Adolf Hurwitz.jpg
Born(1859-03-26)26 March 1859
Died18 November 1919(1919-11-18) (aged 60)
Nationality Germany
Alma mater Universität Leipzig
Known for Riemann–Hurwitz formula
Hurwitz quaternion
Scientific career
Fields Mathematician
Institutions ETH Zürich
Albertus Universität Königsberg
Doctoral advisor Felix Klein
Doctoral students L. Gustave du Pasquier

Adolf Hurwitz (German: [ˈaːdɔlf ˈhʊʁvɪts] ; 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, analysis, geometry and number theory.

Contents

Early life

He was born in Hildesheim, then part of the Kingdom of Hanover, to a Jewish family and died in Zürich, in Switzerland. His father Salomon Hurwitz, a merchant, was not particularly well off. Hurwitz's mother, Elise Wertheimer, died when he was only three years old. [1] Family records indicate that he had siblings and cousins, but their names have yet to be confirmed except for an older brother, Julius, with whom he developed an arithmetical theory for complex continued fractions in around 1890. [2] Hurwitz entered the Realgymnasium Andreanum in Hildesheim in 1868. He was taught mathematics there by Hermann Schubert. [3] Schubert persuaded Hurwitz's father to allow him to go to university, and arranged for Hurwitz to study with Felix Klein at Munich. [3] Salomon Hurwitz could not afford to send his son to university, but his friend, Mr Edwards, agreed to help out financially.

Educational career

Hurwitz entered the University of Munich in 1877, aged 18. He spent one year there attending lectures by Klein, before spending the academic year 1877–1878 at the University of Berlin where he attended classes by Kummer, Weierstrass and Kronecker, [1] after which he returned to Munich.

In October 1880, Felix Klein moved to the University of Leipzig. Hurwitz followed him there, and became a doctoral student under Klein's direction, finishing a dissertation on elliptic modular functions in 1881. Following two years at the University of Göttingen, in 1884 he was invited to become an Extraordinary Professor at the Albertus Universität in Königsberg; there he encountered the young David Hilbert and Hermann Minkowski, on whom he had a major influence. Following the departure of Frobenius, Hurwitz took a chair at the Eidgenössische Polytechnikum Zürich (today the ETH Zürich) in 1892 (having to turn down a position at Göttingen shortly after [1] ), and remained there for the rest of his life.

Throughout his time in Zürich, Hurwitz suffered from continual ill health, which had been originally caused when he contracted typhoid whilst a student in Munich. He suffered from severe migraines, and then in 1905, his kidneys became diseased and he had one removed.

Contributions to mathematics

Adolf Hurwitz Adolf Hurwitz 1910s.jpg
Adolf Hurwitz

He was one of the early students of the Riemann surface theory, and used it to prove many of the foundational results on algebraic curves; for instance Hurwitz's automorphisms theorem. This work anticipates a number of later theories, such as the general theory of algebraic correspondences, Hecke operators, and Lefschetz fixed-point theorem. He also had deep interests in number theory. He studied the maximal order theory (as it now would be) for the quaternions, defining the Hurwitz quaternions that are now named for him. In the field of control systems and dynamical systems theory he derived the Routh–Hurwitz stability criterion for determining whether a linear system is stable in 1895, independently of Edward John Routh who had derived it earlier by a different method. [4]

Family

In 1884, whilst at Königsberg, Hurwitz met and married Ida Samuel, the daughter of a professor in the faculty of medicine. They had three children.

Selected publications

See also

Notes

  1. 1 2 3 O'Connor, John J.; Robertson, Edmund F., "Adolf Hurwitz", MacTutor History of Mathematics archive , University of St Andrews .
  2. Oswald, Nicola M. R.; Steuding, Jörn J. (1 July 2014). "Complex continued fractions: early work of the brothers Adolf and Julius Hurwitz". Archive for History of Exact Sciences. 68 (4): 499–528. doi:10.1007/s00407-014-0135-7. ISSN   1432-0657.
  3. 1 2 Weierstrass, K. (1988) Einleitung in die Theorie der analytischen Funktionen. Braunschweig.
  4. Gopal, M. (2002). Control Systems: Principles and Design, 2nd Ed. Tata McGraw-Hill Education. p. 14. ISBN   0070482896.

Related Research Articles

Felix Klein German mathematician, author of the Erlangen Program

Christian Felix Klein was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and group theory. His 1872 Erlangen Program, classifying geometries by their basic symmetry groups, was an influential synthesis of much of the mathematics of the time.

Riemann surface one-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

Klein quartic Compact Riemann surface of genus 3

In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphism group for this genus, namely order 168 orientation-preserving automorphisms, and 336 automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to PSL(2, 7), the second-smallest non-abelian simple group. The quartic was first described in.

Eduard Study German mathematician

Eduard Study, more properly Christian Hugo Eduard Study, was a German mathematician known for work on invariant theory of ternary forms (1889) and for the study of spherical trigonometry. He is also known for contributions to space geometry, hypercomplex numbers, and criticism of early physical chemistry.

Alfred Pringsheim German mathematician and patron of the arts

Alfred Pringsheim was a German mathematician and patron of the arts. He was born in Ohlau, Prussian Silesia and died in Zürich, Switzerland.

Friedrich Hartogs German mathematician

Friedrich Moritz "Fritz" Hartogs was a German-Jewish mathematician, known for his work on set theory and foundational results on several complex variables.

In mathematics, a composition algebraA over a field K is a not necessarily associative algebra over K together with a nondegenerate quadratic form N that satisfies

Gisbert Wüstholz German mathematician

Gisbert Wüstholz is a German mathematician internationally known for his fundamental contributions to number theory and arithmetic geometry.

Hurwitz surface compact Riemann surface with precisely 84(g − 1) automorphisms, where g is the genus of the surface

In Riemann surface theory and hyperbolic geometry, a Hurwitz surface, named after Adolf Hurwitz, is a compact Riemann surface with precisely 84(g − 1) automorphisms, where g is the genus of the surface. This number is maximal by virtue of Hurwitz's theorem on automorphisms. They are also referred to as Hurwitz curves, interpreting them as complex algebraic curves.

In Riemann surface theory and hyperbolic geometry, the Macbeath surface, also called Macbeath's curve or the Fricke–Macbeath curve, is the genus-7 Hurwitz surface.

Otto Stolz Autrian mathematician

Otto Stolz was an Austrian mathematician noted for his work on mathematical analysis and infinitesimals. Born in Hall in Tirol, he studied in Innsbruck from 1860 and in Vienna from 1863, receiving his habilitation there in 1867. Two years later he studied in Berlin under Karl Weierstrass, Ernst Kummer and Leopold Kronecker, and in 1871 heard lectures in Göttingen by Alfred Clebsch and Felix Klein, before returning to Innsbruck permanently as a professor of mathematics.

Heinrich Burkhardt German mathematician

Heinrich Friedrich Karl Ludwig Burkhardt was a German mathematician. He famously was one of the two examiners of Albert Einstein's PhD thesis Eine neue Bestimmung der Moleküldimensionen. Of Einstein's thesis he stated: "The mode of treatment demonstrates fundamental mastery of the relevant mathematical methods" and "What I checked, I found to be correct without exception."

Andreas Speiser was a Swiss Mathematician and Philosopher of science.

Carl Johannes Thomae German mathematician

Carl Johannes Thomae was a German mathematician.

Ferdinand Rudio German and Swiss mathematician

Ferdinand Rudio was a German and Swiss mathematician and historian of mathematics.

Helmut Röhrl or Rohrl was a German mathematician.

Rudolf Fueter Swiss mathematician (1880-1950)

Karl Rudolf Fueter was a Swiss mathematician, known for his work on number theory.

Reinhardt Kiehl is a German mathematician.

Albert Pfluger Swiss mathematician (1907-1993)

Albert Pfluger was a Swiss mathematician, specializing in complex function theory.