Alexander Stepanovich Popov

Last updated

Alexander Stepanovich Popov
Alexander Stepanovich Popov.jpg
Born(1859-03-16)16 March 1859
Turyinskiye Rudniki settlement, Perm Governorate, Russian Empire
Died13 January 1906(1906-01-13) (aged 46)
St. Petersburg, Russian Empire
Known for Radio
Awards Order of St. Anna of 3rd and 2nd grades
Order of Saint Stanislaus (Imperial House of Romanov) of 2nd grade
Silver medal of Alexander III reign honour on the belt of Order of Alexander Nevsky
Prize of Imperial Russian Technical Society
Alexander Popov signature.svg

Alexander Stepanovich Popov (sometimes spelled Popoff; Russian : Алекса́ндр Степа́нович Попо́в; March 16 [ O.S. March 4] 1859January 13 [ O.S. December 31, 1905] 1906) was a Russian physicist, who was one of the first persons to invent a radio receiving device. [1] [2] [3]


Popov's work as a teacher at a Russian naval school led him to explore high frequency electrical phenomena. On 7 May 1895, he presented a paper on a wireless lightning detector he had built that worked via using a coherer to detect radio noise from lightning strikes. This day is celebrated in the Russian Federation as Radio Day. In a 24 March 1896 demonstration, he transmitted radio signals 250 meters between different campus buildings in St. Petersburg. His work was based on that of another physicist – Oliver Lodge, and contemporaneous with the work of Guglielmo Marconi.

Early life

Born in the town of Krasnoturinsk, Sverdlovsk Oblast in the Urals as the son of a priest, he became interested in natural sciences when he was a child. His father wanted Alexander to join the priesthood and sent him to the Seminary School at Yekaterinburg. [2] There he developed an interest in science and mathematics and instead of going on to Theology School in 1877 he enrolled at St. Petersburg university where he studied physics. [2] [4] After graduation with honors in 1882, he stayed on as a laboratory assistant at the university. However the salary at the university was inadequate to support his family, and in 1883 he took a post as teacher and head of laboratory at the Russian Navy's Torpedo School in Kronstadt on Kotlin Island. [2]

Radio wave receiver

Drawing of Popov's radio wave based lightning detector Popovs first receiver.png
Drawing of Popov's radio wave based lightning detector

Along with his teaching duties at the naval school Popov pursued related areas of research. Trying to solve a problem with the failure in the electrical wire insulation on steel ships (which turned out to be a problem with electrical resonance) led him to further explore oscillations of high frequency electrical currents. [5] His interest in this area of study (including the new field of "Hertzian" or radio waves) was intensified by his trip in 1893 to the Chicago World's Columbian Exposition in the United States where he was able to confer with other researchers in the field. [6]

Popov also read an 1894 article about British physicist Oliver Lodge's experiments related to the discovery of radio waves by German physicist Heinrich Hertz 6 years earlier. [6] On 1 June 1894, after the death of Hertz, British physicist Oliver Lodge gave a memorial lecture on Hertz experiments. He set up a demonstration on the quasi optical nature of Hertzian waves (radio waves) and demonstrated their transmission at distances up to 50 meters. [7] Lodge used a detector called a coherer , a glass tube containing metal filings between two electrodes. [4] When received waves from an antenna were applied to the electrodes, the coherer became conductive allowing the current from a battery to pass through it, with the impulse being picked up by a mirror galvanometer. After receiving a signal, the metal filings in the coherer had to be reset by a manually operated vibrator or by the vibrations of a bell placed on the table nearby that rang every time a transmission was received. [7] Popov set to work to design a more sensitive radio wave receiver that could be used as a lightning detector, to warn of thunderstorms by detecting the electromagnetic pulses of lightning strikes [1] using a coherer receiver. [1] [2]

Operating principle

Circuit of Popov's lightning detector Popov receiver.png
Circuit of Popov's lightning detector

In Popov's lightning detector the coherer (C) was connected to an antenna (A), and to a separate circuit with a relay (R) and battery (V) which operated an electric bell (B). The radio noise generated by a lightning strike turned on the coherer, the current from the battery was applied to the relay, closing its contacts, which applied current to the electromagnet (E) of the bell, pulling the arm over to ring the bell. Popov added an innovative automatic reset feature of a "self tapping" coherer where the bell arm would spring back and tap the coherer, restoring it to its receptive state. [3] The two chokes (L) in the coherer's leads prevented the radio signal across the coherer from short circuiting by passing through the DC circuit. He connected his receiver to a wire antenna (A) suspended high in the air and to a ground (earth) (G). The antenna idea may have been based on a lightning rod and was an early use of a monopole wire aerial. [8]


On 7 May 1895, Popov presented the paper "On the Relation of Metallic Powders to Electric Oscillations", which described his lightning detector, to the Russian Physical and Chemical Society in St. Petersburg. [6] Most Eastern sources regard Popov's lightning detector as the first radio receiver, [9] and 7 May has been celebrated since 1945 in the Russian Federation as "Radio Day". [2] However, there is no evidence Popov sent any type of message on that occasion. The first account of communication by Popov was a demonstration on 24 March 1896 at the Physical and Chemical Society, when some accounts say the Morse code message "ГЕНРИХ ГЕРЦ" ("HEINRICH HERTZ" in Russian) was received from a transmitter 250 meters away and transcribed on the blackboard by the Society president. [2] Historian Charles Susskind in 1962 concluded that Popov did not use radio waves for actual wireless communication before mid-1896. [4]

In 1895 Italian inventor Guglielmo Marconi began work on a purpose-built wireless telegraphy system based on "Hertzian" (radio) waves, developing a spark-gap transmitter and a much improved automatically reset coherer receiver. By mid-1895 Marconi had transmitted messages 1/2 mile (800 meters). He then came up with the idea grounding his transmitter as well as his receiver, and by mid-1896 he was transmitting radio messages a mile and a half (2400 meters). [10] Popov and Marconi's early work seems to have been done without knowledge of each other's system, although reading Marconi's June 1896 patent disclosures led Popov to develop a long-range wireless telegraphy system. [4]

One of Popov's receivers, with chart recorder (white cylinder) to record lightning strikes Popov1.jpg
One of Popov's receivers, with chart recorder (white cylinder) to record lightning strikes

His paper on his experiments: "On the relation of metallic powders to electrical oscillations", was published 15 December 1895. He did not apply for a patent for his invention. [3] In July 1895 he installed his receiver and a siphon recorder on the roof of the Institute of Forestry building in St. Petersburg. [1] and was able to detect thunderstorms at a range of 50 km, [4] however he was also aware of its communication potential. His paper, read at the 7 May 1895 meeting, concluded: [2] [4]

I can express my hope that my apparatus will be applied for signaling at great distances by electric vibrations of high frequency, as soon as there will be invented a more powerful generator of such vibrations.

In 1896, the article depicting Popov's invention was reprinted in the 'Journal of the Russian Physical and Chemical Society'. In March 1896, he effected transmission of radio waves between different campus buildings in St. Petersburg. In November 1897, the French entrepreneur Eugene Ducretet made a transmitter and receiver based on wireless telegraphy in his own laboratory. According to Ducretet, he built his devices using Popov's lightning detector as a model. By 1898, Ducretet was manufacturing equipment of wireless telegraphy based on Popov's instructions. At the same time Popov effected ship-to-shore communication over a distance of 6 miles in 1898 and 30 miles in 1899.

Later work

In 1900 a radio station was established under Popov's instructions on Hogland island (Suursaari) to provide two-way communication by wireless telegraphy between the Russian naval base and the crew of the battleship General-Admiral Apraksin. The battleship had run aground on Hogland island in the Gulf of Finland in November 1899. The crew of the Apraksin were not in immediate danger, but the water in the Gulf began to freeze. Due to bad weather and bureaucratic red tape, the crew of Apraksin did not arrive until January 1900 to establish a wireless station on Hogland Island. By 5 February, however, messages were being received reliably. The wireless messages were relayed to Hogland Island by a station some 25 miles away at Kymi (nowadays Kotka) on the Finnish coast. Kotka was selected as the location for the wireless relay station because it was the point closest to Hogland Island served by telegraph wires connected to Russian naval headquarters. [11]

By the time the Apraksin was freed from the rocks by the icebreaker Yermak at the end of April, 440 official telegraph messages had been handled by the Hogland Island wireless station. Besides the rescue of the Apraksin's crew, more than 50 Finnish fishermen, who were stranded on a piece of drift ice in the Gulf of Finland, were saved by the icebreaker Yermak following distress telegrams sent by wireless telegraphy.[ citation needed ] In 1901 Alexander Popov was appointed as professor at the Electrotechnical Institute. In 1905 he was elected director of the institute. [12]


In 1905 he became seriously ill and died of a brain hemorrhage on 13 January 1906. [13]


Radio Day

In 1945 on the 50th anniversary of Popov's experiment the old Soviet Union made 7 May a new holiday, Radio Day, the day they claim Popov invented radio. Historians note this holiday may be more due to Cold War era politics than historical evidence. [14] [1] [3] Radio Day is still officially marked in Russia and Bulgaria.

Named after

A minor planet, 3074 Popov, discovered by Soviet astronomer Lyudmila Zhuravlyova in 1979, is named after him. [15] At ITU Telecom World 2011, Igor Shchyogolev, Minister of Telecom and Mass Communications of the Russian Federation alongside Hamadoun Touré, Secretary General of the ITU, inaugurated the "Alexander Stepanovich Popov" conference room at ITU's headquarters in Geneva.[ citation needed ]


  1. Monument to A. S. Popov, Nizhny Novgorod, Museum of Radiophysics
  2. Monument to A. S. Popov, Yekaterinburg, Popov Square on Pushkin Street.
  3. Monument to A. S. Popov, Rostov-on-Don, Radio Frequency Center of the Southern Federal District, main entrance, 50 Budennovsky Ave., the opening took place on 7 May 2009, on Radio Day
  4. Monument to A. S. Popov, Krasnoturinsk
  5. Monument to A. S. Popov, Peterhof, Naval Institute of Radio Electronics named after A.S. Popov, main entrance
  6. Monument to A. S. Popov, Peterhof, Naval Institute of Radio Electronics named after A.S. Popov, entrance from the Scout boulevard
  7. Monument to A. S. Popov, Saint Petersburg, sculptors: V. Ya. Bogolyubov and V.V. Isaev, architect: N.V. Baranov – (1959; Kamennoostrovsky Prospekt, in the square between houses 39 and 41), at the station Petrogradskaya
  8. Monument to A. S. Popov, Moscow, Alley of Scientists, Sparrow Hills, Moscow State University n.a. M.V. Lomonosov
  9. Monument to A. S. Popov, Ryazan, at the main entrance to the Ryazan State Radio Engineering University
  10. Monument to A. S. Popov, Kronstadt, square at the memorial museum of the inventor of radio A. S. Popov [16]
  11. Monument to A. S. Popov, Perm, architects: D. Lapshin, E. Koltsova; artist I. Dymshakov; sculptor A. Matveev
  12. Monument to A. S. Popov, Kotka, Finland
  13. Monument to A. S. Popov, Dnipro, st. Stoletova
  14. Monument to A. S. Popov on the territory of Odessa Electrotechnical Institute of Communications named after A.S. Popov (now Odessa National Academy of # Communications named after A.S. Popov)
  15. Monument to A. S. Popov, Dalmatovo in the territory of school No. 2, named after the inventor.
  16. Monument to A. S. Popov, Omsk, the territory of “Radio Plant named after A. S. Popov", a bust.
  17. The obelisk, a memorial stone and a stele in honor of the implementation in 1900 by inventor A.S. Popov of the first practical radio communication session, Hogland
  18. Memorial stone in honor of the invention of the radio in 1895 by A. S. Popov, Kronshtadt, Toulonskaya Alley, Yachtennaya Square
  19. Sign 100 years of radio (1997), Sevastopol

Commemorative plaques

  1. In Kronstadt, Sovetskaya St., at the house 43 a memorial plaque states: “Here, in the naval assembly, in 1886–1898 the inventor of the radio A. S. Popov gave public lectures", 1995. Sculptor Sidorenko V. G. Marble, bronze.
  2. In Kronstadt, Makarovskaya St., there is a memorial plaque on the house states: “Here, in the former marine technical school, in 1890–1901, radio inventor A. S. Popov worked as a teacher", 1995. Sculptor Sidorenko V. G. Marble, bronze.
  3. In Kronstadt, Makarovskaya St., there is a memorial plaque on the house: “Here, in the former mine officer class, the inventor of the radio A. S. Popov worked. 1883–1901”, 1945. Marble.
  4. In Kronstadt, 1 Makarovskaya St., a gazebo in the courtyard, memorial plaque: “Here, in April–May 1895, the inventor of the radio A. S. Popov tested the world's first radio receiver”, 1945. Marble.
  5. In Kronshtadt, Uritsky St., on the house 35 a plaque: “I, the great Russian scientist, inventor of radio Alexander Stepanovich Popov, lived here in 1895–1901.", 1945. Marble.
  6. In Kronstadt, Ammerman St., on the house 31 a plaque: “The great Russian scientist, inventor of radio Alexander Stepanovich Popovlived here from 1886 to 1898", 1974. Marble.
  7. In Saint Petersburg, Admiralteysky passage, 2. In the building of the Higher Naval Engineering School. F. E. Dzerzhinsky memorial plaque states: “The great Russian scientist, radio inventor A. S. Popov taught at the Marine Engineering School from 1890 to 1900.” Until 1977. Marble, bronze.
  8. In Saint Petersburg, Makarova Embankment (formerly Tuchkova Embankment) at building 22, in which A.S. Popov lived in 1901–1902, a memorial plaque was installed. Marble.
  9. In Saint Petersburg, Professor Popov Str., On the house 3 there is a plaque: "Inventor of the radio A. S. Popov lived, worked and died on December 31, 1905", 1925 – originally installed, 1945 – renewed. Marble.
  10. In Saint Petersburg, Professor Popov St., 5/3. Electrotechnical University, memorial plaque: “In this room in 1903–1905 Alexander Stepanovich Popov was a lecturer”, 1959. Arch. Ivanov A.I., Gellerstein R.I. Marble
  11. In Saint Petersburg, Professor Popov St., 5/3. University of Electrical Engineering, memorial plaque: “Office of the inventor of radio, Professor A. S. Popov. 1901–1905.", 1948. Marble.
  12. In Saint Petersburg, Professor Popov St., 5/3. Electrotechnical University, memorial plaque: “In 1905 Radio inventor Professor Alexander Stepanovich Popov was the first elected director of this institute” 1947. Arch. Smirnov N.I. Marble.
  13. In Saint Petersburg, V.I., Szedovskaya line, on house 31/22, a plaque: “In this house in 1901–1902 lived the inventor of the radio A. S. Popov", 1947. Smirnov N. I. Marble.
  14. In Saint Petersburg, Pochtamtskaya St., 7. Central Museum of Communications named. A. S. Popov, lobby, memorial plaque: “In 1945 the Central Museum of Communications was named after A. S. Popov”, marble.
  15. In Saint Petersburg, V.I., in the courtyard of Saint Petersburg State University on the building of the Russian Physics-chemical Society, Universitetskaya emb., memorial plaque: “Here on March 24 (12), 1896 A.S. Popov received the very first radiogram using the device he invented", 1961. Marble.
  16. With the support of the International Telecommunication Union (ITU) in Geneva from 5 to 9 October 2009, the World Exhibition “Telecommunication World 2009” was held (ITU Telecom World 2009). Among the events was the opening of a plaque to A. S. Popov at the world communications management center. [17]


  1. Museum of Radio named after A. S. Popova, Ekaterinburg
  2. House-Museum of Alexander Stepanovich Popov, Krasnoturinsk
  3. Memorial Museum of Radio Inventor A.S. Popov, Kronstadt
  4. Museum-cabinet and museum-apartment of A. S. Popov, LETI, St. Petersburg
  5. The postal and telecommunications museum in Saint Petersburg, the leading museum in its field in the Russian Federation, has since 1945 bore the name A.S. Popov Central Museum of Communications. [18]


Radio pioneer Alexander Popov on the 1989 USSR stamp. The text says "Inventor of radio, A. S. Popov, 1859-1906. Demonstration of the first radio, 1895" 1989 CPA 6117.jpg
Radio pioneer Alexander Popov on the 1989 USSR stamp. The text says "Inventor of radio, A. S. Popov, 1859–1906. Demonstration of the first radio, 1895"

Books about A. S. Popov:

Golovin G.I. ("The life of wonderful people" Series, No. 141): Alexander Stepanovich Popov – 1945, 88 pp., 50


Films about A. S. Popov:

Alexander Popov (film) is a 1949 biographical film about the life and work of Alexander Stepanovich Popov.


16 March is the birthday of A. S. Popov 7 May – Radio Day


In 1984, the USSR State Bank issued a jubilee coin with a face value of 1 ruble dedicated to A.S. Popov. [19]


Many stamps have been issued depict A.S.Popov bearing the honor of him inventing radio.


Some of his descendants escaped to Manchuria during the Bolshevik Revolution and eventually made their way to the United States. Among others were his cousin, Dr. Paul Popov, who became a prominent physician in San Francisco and Paul's son, Egor Popov (1913–2001), who became a UC Berkeley Professor Emeritus of Civil and Environmental Engineering. [20] [21]

See also

Related Research Articles

Guglielmo Marconi Italian inventor and radio pioneer (1874–1937)

Guglielmo Giovanni Maria Marconi, 1st Marquis of Marconi was an Italian inventor and electrical engineer, known for his creation of a practical radio wave-based wireless telegraph system. This led to Marconi being credited as the inventor of radio, and he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun "in recognition of their contributions to the development of wireless telegraphy".

The early history of radio is the history of technology that produces and uses radio instruments that use radio waves. Within the timeline of radio, many people contributed theory and inventions in what became radio. Radio development began as "wireless telegraphy". Later radio history increasingly involves matters of broadcasting.

Wireless telegraphy Method of communication

Wireless telegraphy or radiotelegraphy is transmission of telegraph signals by radio waves. Before about 1910, the term wireless telegraphy was also used for other experimental technologies for transmitting telegraph signals without wires. In radiotelegraphy, information is transmitted by pulses of radio waves of two different lengths called "dots" and "dashes", which spell out text messages, usually in Morse code. In a manual system, the sending operator taps on a switch called a telegraph key which turns the transmitter on and off, producing the pulses of radio waves. At the receiver the pulses are audible in the receiver's speaker as beeps, which are translated back to text by an operator who knows Morse code.

Jagadish Chandra Bose Physicist, biologist and botanist

Sir Jagadish Chandra Bose (;, IPA: [dʒɔɡodiʃ tʃɔndro boʃu]; 30 November 1858 – 23 November 1937) was a biologist, physicist, botanist and an early writer of science fiction. He pioneered the investigation of radio and microwave optics, made significant contributions to plant science, and was a major force behind the expansion of experimental science on the Indian subcontinent. IEEE named him one of the fathers of radio science. Bose is considered the father of Bengali science fiction, and also invented the crescograph, a device for measuring the growth of plants. A crater on the moon has been named in his honour. He founded Bose Institute, a premier research institute of India and also one of its oldest. Established in 1917, the institute was the first interdisciplinary research centre in Asia. He served as the Director of Bose Institute from its inception until his death.


The coherer was a primitive form of radio signal detector used in the first radio receivers during the wireless telegraphy era at the beginning of the 20th century. Its use in radio was based on the 1890 findings of French physicist Édouard Branly and adapted by other physicists and inventors over the next ten years. The device consists of a tube or capsule containing two electrodes spaced a small distance apart with loose metal filings in the space between. When a radio frequency signal is applied to the device, the metal particles would cling together or "cohere", reducing the initial high resistance of the device, thereby allowing a much greater direct current to flow through it. In a receiver, the current would activate a bell, or a Morse paper tape recorder to make a record of the received signal. The metal filings in the coherer remained conductive after the signal (pulse) ended so that the coherer had to be "decohered" by tapping it with a clapper actuated by an electromagnet, each time a signal was received, thereby restoring the coherer to its original state. Coherers remained in widespread use until about 1907, when they were replaced by more sensitive electrolytic and crystal detectors.

Oliver Lodge British physicist and writer

Sir Oliver Joseph Lodge, was a British physicist and writer involved in the development of, and holder of key patents for, radio. He identified electromagnetic radiation independent of Hertz's proof and at his 1894 Royal Institution lectures, Lodge demonstrated an early radio wave detector he named the "coherer". In 1898 he was awarded the "syntonic" patent by the United States Patent Office. Lodge was Principal of the University of Birmingham from 1900 to 1920.

Jozef Murgaš Slovak inventor, architect, botanist, painter and Catholic priest

Jozef Murgaš was a Slovak inventor, architect, botanist, painter and Roman Catholic priest. He contributed to wireless telegraphy and helped in the development of mobile communications and the wireless transmission of information and the human voice.

Édouard Branly French physicist, inventor and professor

Édouard Eugène Désiré Branly was a French inventor, physicist and professor at the Institut Catholique de Paris. He is primarily known for his early involvement in wireless telegraphy and his invention of the Branly coherer around 1890.

Invention of radio Aspect of history

The invention of radio communication spanned many decades of establishing theoretical underpinnings, discovery and experimental investigation of radio waves, and engineering and technical developments related to their transmission and detection. This scientific work preceded Guglielmo Marconi's use of radio waves in a wireless communication system.

<i>Alexander Popov</i> (film) 1949 film by Herbert Rappaport

Alexander Popov is a 1949 biographical film directed by Herbert Rappaport about the life and work of Alexander Stepanovich Popov, who was the notable physicist and electrical engineer, and early developer of radio communication.

Magnetic detector

The magnetic detector or Marconi magnetic detector, sometimes called the "Maggie", was an early radio wave detector used in some of the first radio receivers to receive Morse code messages during the wireless telegraphy era around the turn of the 20th century. Developed in 1902 by radio pioneer Guglielmo Marconi from a method invented in 1895 by New Zealand physicist Ernest Rutherford it was used in Marconi wireless stations until around 1912, when it was superseded by vacuum tubes. It was widely used on ships because of its reliability and insensitivity to vibration. A magnetic detector was part of the wireless apparatus in the radio room of the RMS Titanic which was used to summon help during its famous 15 April 1912 sinking.

Radio Day National holiday in Russia on 7 May

Radio Day, Communications Workers' Day or Radio and Television Day is a commemoration of the development of radio in Russia. It takes place on 7 May, the day in 1895 on which Alexander Stepanovich Popov demonstrated a radio based lightning detector.

The timeline of radio lists within the history of radio, the technology and events that produced instruments that use radio waves and activities that people undertook. Later, the history is dominated by programming and contents, which is closer to general history.

Boris Pavlovich Grabovsky was a Soviet engineer of Ukrainian descent who invented a first fully electronic TV set that was demonstrated in 1928. In 1925, one of the pioneers of television Boris Rosing advised and helped him apply for a patent of a fully electronic TV set called Telefot. Son of the Ukrainian poet Pavlo Grabovsky.

The following outline is provided as an overview of and topical guide to telecommunication:

Camille Tissot

Camille Papin Tissot was a French naval officer and pioneer of wireless telegraphy who established the first French operational radio connections at sea.

Dmitry Lachinov

Dmitry Aleksandrovich Lachinov was a Russian physicist, electrical engineer, inventor, meteorologist and climatologist.

Eugène Adrien Ducretet

Eugène Adrien Ducretet was a French scientific instrument manufacturer, who performed some of the first experiments on wireless telegraphy in France. His father, Louis Joseph Ducretet, was a Savoy textiles merchant who moved to Paris. He never completed a formal education, leaving primary school at age 15. After several years apprenticed to Paris engineer Paul-Gustav Froment, Ducretet opened his own workshop in 1864 at 21 Rue des Ursulines where with a few employees he manufactured classical physics research, teaching and demonstration apparatus, such as galvanometers, Wimshurst machines, and Crookes tubes. Over time his reputation grew and he became instrument supplier to several large Paris educational and scientific institutions. He was awarded a gold medal for his quality instruments at the 1878 Paris Universal Exposition and from then on his firm was a regular presence at important international expositions, winning another gold at the 1881 International Electricity Exposition in Paris. He was made a Knight of the Legion of Honour in 1885.

A.S. Popov Central Museum of Communications postal & telecommunications museum in Saint Petersburg, Russia

The A.S. Popov Central Museum of Communications is a museum of science and technology founded in 1872. It is located in the historic centre of Saint Petersburg, Russia, near Saint Isaac's Square.



  1. 1 2 3 4 5 Smith-Rose, Reginald Leslie (2013). "Alexandr Popov". Encyclopædia Britannica Online. Encyclopædia Britannica, Inc. Retrieved 6 November 2013.
  2. 1 2 3 4 5 6 7 8 McKenna, Joe (2007). "Aleksandr Popov's Contributions to Wireless Communication". IEEE Engineering Hall of Fame. Institute of Electrical and Electronic Engineers. Archived from the original on 10 November 2013. Retrieved 6 November 2013.
  3. 1 2 3 4 (author name redacted) (January 1960). "Did Alexandr Popov invent radio?" (PDF). NSA Technical Journal. US: National Security Agency. 5 (1): 35–41. Archived from the original (PDF) on 10 November 2013. Retrieved 6 November 2013. declassified 8 January 2008
  4. 1 2 3 4 5 6 Huurdeman, Anton A. (2003). The Worldwide History of Telecommunications. John Wiley and Sons. pp. 205–207. ISBN   0471205052. A picture of Popov's receiver appears on p. 207, fig. 12.2
  5. M. Radovsky, Alexander Popov Inventor of Radio, The Minerva Group, Inc.- 2001, pages 37–38
  6. 1 2 3 Christopher H. Sterling, Encyclopedia of Radio, Routledge – 2003, page 1820
  7. 1 2 Sungook Hong, Wireless: From Marconi's Black-box to the Audion, MIT Press, 2001, pages 30–32
  8. Sungook Hong, Wireless: From Marconi's Black-box to the Audion, MIT Press, 2001, page 202
  9. Electronics World, Volume 64, Ziff-Davis Publishing Company – 1960, page 78
  10. Sungook Hong, Wireless: From Marconi's Black-box to the Audion, MIT Press – 2001, page 202 (notes)
  11. "Aleksandr Popov". IEEE Global History Network. IEEE. Retrieved 21 July 2011.
  12. "Eminent scientists of Saint-Petersburg Electrotechnical University ETU "LETI"". Saint Petersburg, Russia: Saint-Petersburg Electrotechnical University. Retrieved 21 December 2020.
  13. Oakes, Elizabeth H. (14 May 2014). A to Z of STS Scientists. Infobase Publishing. p. 253. ISBN   9781438109251 . Retrieved 6 May 2018.
  14. Sungook Hong, Wireless: From Marconi's Black-box to the Audion, page 1
  15. Dictionary of Minor Planet Names, 2003, vol.1, p.253
  16. "150th birthday of Popov A.S." Retrieved 6 February 2020.
  17. The opening of the memorial plaque to A. S. Popov in Geneva // "Radio" magazine. 2009. p. 5.
  18. "About museum". About. Saint Petersburg, Russia: The A.S. Popov Central Museum of Communications. Archived from the original on 23 May 2015. Retrieved 31 May 2015.
  19. "1 Ruble (Alexander Popov)". Retrieved 6 February 2020.
  20. Archived 21 January 2012 at the Wayback Machine Engineering Pioneer Egor Popov
  21. Connections: The EERI Oral History Series. Egor Popov