Amphibolite

Last updated
Amphibolite from Cape Cod, Massachusetts Amphibolite from under Cape Cod USA.jpg
Amphibolite from Cape Cod, Massachusetts
Garnet bearing amphibolite from Val di Fleres, Italy Amphibolit.jpg
Garnet bearing amphibolite from Val di Fleres, Italy

Amphibolite ( /æmˈfɪb.əˌlt/ ) is a metamorphic rock that contains amphibole, especially hornblende and actinolite, as well as plagioclase feldspar.

Contents

Amphibolite is a grouping of rocks composed mainly of amphibole and plagioclase, with little or no quartz. It is typically dark-colored and dense, with a weakly foliated or schistose (flaky) structure. The small flakes of black and white in the rock often give it a salt-and-pepper appearance.

Amphibolite need not be derived from metamorphosed mafic rocks. Because metamorphism creates minerals entirely based upon the chemistry of the protolith, certain 'dirty marls' and volcanic sediments may actually metamorphose to an amphibolite assemblage. Deposits containing dolomite and siderite also readily yield amphibolite (tremolite-schist, grunerite-schist, and others) especially where there has been a certain amount of contact metamorphism by adjacent granitic masses. Metamorphosed basalt creates ortho-amphibolite and other chemically appropriate lithologies create para-amphibolite.

Tremolite, while it is a metamorphic amphibole, is derived most usually from highly metamorphosed ultramafic rocks, and thus tremolite-talc schist is not generally considered as 'amphibolite'. A holocrystalline plutonic igneous rock composed primarily of hornblende amphibole is called a hornblendite, which is usually a crystal cumulate rock. Igneous rocks with greater than 90% amphiboles, which have a feldspar groundmass, may be a lamprophyre.

Ortho-amphibolite vs. para-amphibolite

Metamorphic rocks composed primarily of amphibole, plagioclase, with subordinate epidote, zoisite, chlorite, quartz, titanite, and accessory leucoxene, ilmenite and magnetite which have a protolith of an igneous rock are known as Orthoamphibolite.

Para-amphibolite will generally have the same equilibrium mineral assemblage as orthoamphibolite, with more biotite, and may include more quartz, plagioclase, and depending on the protolith, more calcite/aragonite and wollastonite.

Often the easiest way to determine the true nature of an amphibolite is to inspect its field relationships; especially whether it is interfingered with other metasedimentary rocks, especially greywacke and other poorly sorted sedimentary rocks. If the amphibolite appears to transgress apparent protolith bedding surfaces it is an ortho-amphibolite, as this suggests it was a dyke. Picking a sill and thin metamorphosed lava flows may be more troublesome.

Thereafter, whole rock geochemistry will suitably identify ortho- from para-amphibolite.

The word metabasalt was thus coined, largely to avoid the confusion between ortho-amphibolite and para-amphibolite. While not a true metamorphic rock name, as it infers an origin, it is a useful term.

Amphibolite facies

Garnet amphibolite, sold as "Nordic Sunset Granite", reportedly from Murmansk area Nordic Sunset Granite (garnet amphibolite) Murmansk.jpg
Garnet amphibolite, sold as "Nordic Sunset Granite", reportedly from Murmansk area

Amphibolite as a rock defines a particular set of temperature and pressure conditions known as the amphibolite facies. However, caution must be applied here before embarking on metamorphic mapping based on amphibolite alone.

Firstly, for an orthoamphibolite or amphibolite to be classed as a metamorphic amphibolite, it must be certain that the amphibole in the rock is a prograde metamorphic product, and not a retrograde metamorphic product. For instance, actinolite amphibole is a common product of retrograde metamorphism of metabasalt at (upper) greenschist facies conditions. Often, this will take on the crystal form and habit of the original protolith assemblage; actinolite pseudomorphically replacing pyroxene is an indication that the amphibolite may not represent a peak metamorphic grade in the amphibolite facies. Actinolite schist is often the result of hydrothermal alteration or metasomatism, and thus may not, necessarily, be a good indicator of metamorphic conditions when taken in isolation.

Secondly, the microstructure and crystal size of the rock must be appropriate. Amphibolite facies conditions are experienced at temperatures in excess of 500 °C and pressures less than 1.2 GPa, well within the ductile deformation field. Gneissic texture may occur nearby, if not then mylonite zones, foliations and ductile behaviour, including stretching lineations may occur.

While it is not impossible to have remnant protolith mineralogy, this is rare. More common is to find phenocrysts of pyroxene, olivine, plagioclase and even magmatic amphibole such as pargasite rhombohedra, pseudomorphed by hornblende amphibole. Original magmatic textures, especially crude magmatic layering in layered intrusions, is often preserved.

Amphibolite facies equilibrium mineral assemblages of various protolith rock types consist of:

Amphibolite facies is usually a product of Barrovian Facies Sequence or advanced Abukuma Facies Sequence metamorphic trajectories. Amphibolite facies is a result of continuing burial and thermal heating after greenschist facies is exceeded. Further burial and metamorphic compression (but little extra heat) will lead to eclogite facies metamorphism; with more advanced heating the majority of rocks begin melting in excess of 650 to 700 °C in the presence of water. In dry rocks, however, additional heat (and burial) may result in granulite facies conditions.

Uralite

Uralite is a particular hydrothermally altered pyroxenite; during autogenic hydrothermal circulation the primary mineralogy of pyroxene and plagioclase, etc. has altered to actinolite and saussurite (albite + epidote). The texture is distinctive, the pyroxene altered to fuzzy, radially arranged actinolite pseudomorphically after pyroxene, and saussuritised plagioclase.

Epidiorite

The archaic term epidiorite is sometimes used, especially in Europe, to refer to a metamorphosed ortho-amphibolite with a protolith of diorite, gabbro or other mafic intrusive rock. In epidiorite the original clinopyroxene (most often augite) has been replaced by the fibrous amphibole uralite.

Uses

Amphibolite was a favourite material for the production of adzes (shoe-last-celts) in the central European early Neolithic (Linearbandkeramic and Rössen cultures).[ citation needed ]

Amphibolite is a common dimension stone used in construction, paving, facing of buildings, especially because of its attractive textures, dark color, hardness and polishability and its ready availability.[ citation needed ]

Related Research Articles

Metamorphic rock Rock that was subjected to heat and pressure

Metamorphic rocks arise from the transformation of existing rock to new types of rock, in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C and, often, elevated pressure of 100 megapascals (1,000 bar) or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be a sedimentary, igneous, or existing metamorphic rock.

Amphibole group of inosilicate minerals

Amphibole is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain SiO
4
tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Amphiboles can be green, black, colorless, white, yellow, blue, or brown. The International Mineralogical Association currently classifies amphiboles as a mineral supergroup, within which are two groups and several subgroups.

Metamorphism Change of minerals in pre-existing rocks without melting into liquid magma

Metamorphism is the change of minerals or geologic texture in pre-existing rocks (protoliths), without the protolith melting into liquid magma. The change occurs primarily due to heat, pressure, and the introduction of chemically active fluids. The chemical components and crystal structures of the minerals making up the rock may change even though the rock remains a solid. Changes at or just beneath Earth's surface due to weathering or diagenesis are not classified as metamorphism. Metamorphism typically occurs between diagenesis, and melting (~850°C).

Tremolite Amphibole, double chain inosilicate mineral

Tremolite is a member of the amphibole group of silicate minerals with composition: Ca2(Mg5.0-4.5Fe2+0.0-0.5)Si8O22(OH)2. Tremolite forms by metamorphism of sediments rich in dolomite and quartz. Tremolite forms a series with actinolite and ferro-actinolite. Pure magnesium tremolite is creamy white, but the color grades to dark green with increasing iron content. It has a hardness on Mohs scale of 5 to 6. Nephrite, one of the two minerals of the gemstone jade, is a green variety of tremolite.

Metasomatism Chemical alteration of a rock by hydrothermal and other fluids

Metasomatism is the chemical alteration of a rock by hydrothermal and other fluids. It is the replacement of one rock by another of different mineralogical and chemical composition. The minerals which compose the rocks are dissolved and new mineral formations are deposited in their place. Dissolution and deposition occur simultaneously and the rock remains solid.

Scapolite

The scapolites are a group of rock-forming silicate minerals composed of aluminium, calcium, and sodium silicate with chlorine, carbonate and sulfate. The two endmembers are meionite and marialite. Silvialite (Ca,Na)
4
Al
6
Si
6
O
24
(SO
4
,CO
3
)
is also a recognized member of the group.

Granulite Class of high-grade medium to coarse grained metamorphic rocks

Granulites are a class of high-grade metamorphic rocks of the granulite facies that have experienced high-temperature and moderate-pressure metamorphism. They are medium to coarse–grained and mainly composed of feldspars sometimes associated with quartz and anhydrous ferromagnesian minerals, with granoblastic texture and gneissose to massive structure. They are of particular interest to geologists because many granulites represent samples of the deep continental crust. Some granulites experienced decompression from deep in the Earth to shallower crustal levels at high temperature; others cooled while remaining at depth in the Earth.

Hornfels

Hornfels is the group name for a set of contact metamorphic rocks that have been baked and hardened by the heat of intrusive igneous masses and have been rendered massive, hard, splintery, and in some cases exceedingly tough and durable. These properties are due to fine grained non-aligned crystals with platy or prismatic habits, characteristic of metamorphism at high temperature but without accompanying deformation. The term is derived from the German word Hornfels, meaning "hornstone", because of its exceptional toughness and texture both reminiscent of animal horns. These rocks were referred to by miners in northern England as whetstones.

Blueschist Metavolcanic rock that forms by the metamorphism of basalt and rocks with similar composition

Blueschist, also called glaucophane schist, is a metavolcanic rock that forms by the metamorphism of basalt and rocks with similar composition at high pressures and low temperatures, approximately corresponding to a depth of 15–30 km (9.3–18.6 mi). The blue color of the rock comes from the presence of the predominant minerals glaucophane and lawsonite.

Anthophyllite

Anthophyllite is an amphibole mineral: ☐Mg2Mg5Si8O22(OH)2 (☐ is for a vacancy, a point defect in the crystal structure), magnesium iron inosilicate hydroxide. Anthophyllite is polymorphic with cummingtonite. Some forms of anthophyllite are lamellar or fibrous and are classed as asbestos. The name is derived from the Latin word anthophyllum, meaning clove, an allusion to the most common color of the mineral.

Greenschist

Greenschists are metamorphic rocks that formed under the lowest temperatures and pressures usually produced by regional metamorphism, typically 300–450 °C (570–840 °F) and 2–10 kilobars (14,500–58,000 psi). Greenschists commonly have an abundance of green minerals such as chlorite, serpentine, and epidote, and platy minerals such as muscovite and platy serpentine. The platiness causes the tendency to split, or have schistosity. Other common minerals include quartz, orthoclase, talc, carbonate minerals and amphibole (actinolite).

Litchfieldite

Litchfieldite is a rare igneous rock. It is a coarse-grained, foliated variety of nepheline syenite, sometimes called nepheline syenite gneiss or gneissic nepeheline syenite. Litchfieldite is composed of two varieties of feldspar, with nepheline, sodalite, cancrinite and calcite. The mafic minerals, when present, are magnetite and an iron-rich variety of biotite (lepidomelane).

Talc carbonates are a suite of rock and mineral compositions found in metamorphosed ultramafic rocks.

An index mineral is used in geology to determine the degree of metamorphism a rock has experienced. Depending on the original composition of and the pressure and temperature experienced by the protolith, chemical reactions between minerals in the solid state produce new minerals. When an index mineral is found in a metamorphosed rock, it indicates the minimum pressure and temperature the protolith must have achieved in order for that mineral to form. The higher the pressure and temperature in which the rock formed, the higher the grade of the rock.

Geothermobarometry is the science of measuring the previous pressure and temperature history of a metamorphic or intrusive igneous rocks. Geothermobarometry is a combination of geobarometry, where a pressure of mineral formation is resolved, and geothermometry where a temperature of formation is resolved.

Metamorphic facies

A metamorphic facies is a set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures. The assemblage is typical of what is formed in conditions corresponding to an area on the two dimensional graph of temperature vs. pressure. Rocks which contain certain minerals can therefore be linked to certain tectonic settings, times and places in the geological history of the area. The boundaries between facies are wide because they are gradational and approximate. The area on the graph corresponding to rock formation at the lowest values of temperature and pressure is the range of formation of sedimentary rocks, as opposed to metamorphic rocks, in a process called diagenesis.

The Thiviers-Payzac Unit is a metasedimentary succession of late Neoproterozoic and Cambrian age outcropping in the southern Limousin in France. The unit geologically forms part of the Variscan basement of the northwestern Massif Central.

Mineral alteration refers to the various natural processes that alter a mineral's chemical composition or crystallography.

Subduction zone metamorphism Changes of rock due to pressure and heat near a subduction zone

A subduction zone is a region of the earth's crust where one tectonic plate moves under another tectonic plate; oceanic crust gets recycled back into the mantle and continental crust gets created by the formation of arc magmas. Arc magmas account for more than 20% of terrestrially produced magmas and are produced by the dehydration of minerals within the subducting slab as it descends into the mantle and are accreted onto the base of the overriding continental plate. Subduction zones host a unique variety of rock types created by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process creates and destroys water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding the timing and conditions in which these dehydration reactions occur, is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust.

References