Arthur Cayley

Last updated

Arthur Cayley

FRS
Arthur Cayley.jpg
Portrait in London by
Barraud & Jerrard
Born(1821-08-16)16 August 1821
Died26 January 1895(1895-01-26) (aged 73)
Nationality British
Education King's College School
Alma mater Trinity College, Cambridge
(BA, 1842)
Known for Algebraic geometry
Group theory
Cayley–Hamilton theorem
Cayley–Dickson construction
Awards Smith's Prize (1842)
De Morgan Medal (1884)
Royal Medal (1859)
Copley Medal (1882)
Scientific career
Fields Mathematics
Institutions Trinity College, Cambridge
Academic advisors George Peacock
William Hopkins
Notable students H. F. Baker
Andrew Forsyth
Charlotte Scott

Arthur Cayley FRS ( /ˈkli/ ; 16 August 1821 – 26 January 1895) was a prolific British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics.

Contents

As a child, Cayley enjoyed solving complex maths problems for amusement. He entered Trinity College, Cambridge, where he excelled in Greek, French, German, and Italian, as well as mathematics. He worked as a lawyer for 14 years.

He postulated the Cayley–Hamilton theorem—that every square matrix is a root of its own characteristic polynomial, and verified it for matrices of order 2 and 3. [1] He was the first to define the concept of a group in the modern way—as a set with a binary operation satisfying certain laws. [2] Formerly, when mathematicians spoke of "groups", they had meant permutation groups. Cayley tables and Cayley graphs as well as Cayley's theorem are named in honour of Cayley.

Early years

Arthur Cayley was born in Richmond, London, England, on 16 August 1821. His father, Henry Cayley, was a distant cousin of Sir George Cayley, the aeronautics engineer innovator, and descended from an ancient Yorkshire family. He settled in Saint Petersburg, Russia, as a merchant. His mother was Maria Antonia Doughty, daughter of William Doughty. According to some writers she was Russian, but her father's name indicates an English origin. His brother was the linguist Charles Bagot Cayley. Arthur spent his first eight years in Saint Petersburg. In 1829 his parents were settled permanently at Blackheath, near London. Arthur was sent to a private school. At age 14 he was sent to King's College School. The school's master observed indications of mathematical genius and advised the father to educate his son not for his own business, as he had intended, but to enter the University of Cambridge.

Education

At the unusually early age of 17 Cayley began residence at Trinity College, Cambridge. The cause of the Analytical Society had now triumphed, and the Cambridge Mathematical Journal had been instituted by Gregory and Robert Leslie Ellis. To this journal, at the age of twenty, Cayley contributed three papers, on subjects that had been suggested by reading the Mécanique analytique of Lagrange and some of the works of Laplace.

Cayley's tutor at Cambridge was George Peacock and his private coach was William Hopkins. He finished his undergraduate course by winning the place of Senior Wrangler, and the first Smith's prize. [3] His next step was to take the M.A. degree, and win a Fellowship by competitive examination. He continued to reside at Cambridge University for four years; during which time he took some pupils, but his main work was the preparation of 28 memoirs to the Mathematical Journal.

As a lawyer

Because of the limited tenure of his fellowship it was necessary to choose a profession; like De Morgan, Cayley chose law, and was admitted to Lincoln's Inn, London on 20 April 1846 at the age of 24. [4] He made a specialty of conveyancing. It was while he was a pupil at the bar examination that he went to Dublin to hear Hamilton's lectures on quaternions. [5]

His friend J. J. Sylvester, his senior by five years at Cambridge, was then an actuary, resident in London; they used to walk together round the courts of Lincoln's Inn, discussing the theory of invariants and covariants. During this period of his life, extending over fourteen years, Cayley produced between two and three hundred papers. [5]

As a professor

At Cambridge University the ancient professorship of pure mathematics is denominated by the Lucasian, and is the chair that had been occupied by Isaac Newton. Around 1860, certain funds bequeathed by Lady Sadleir to the University, having become useless for their original purpose, were employed to establish another professorship of pure mathematics, called the Sadleirian. The duties of the new professor were defined to be "to explain and teach the principles of pure mathematics and to apply himself to the advancement of that science." To this chair Cayley was elected when 42 years old. He gave up a lucrative practice for a modest salary; but he never regretted the exchange, for the chair at Cambridge enabled him to end the divided allegiance between law and mathematics, and to devote his energies to the pursuit that he liked best. He at once married and settled down in Cambridge. More fortunate than Hamilton in his choice, his home life was one of great happiness. His friend and fellow investigator, Sylvester, once remarked that Cayley had been much more fortunate than himself; that they both lived as bachelors in London, but that Cayley had married and settled down to a quiet and peaceful life at Cambridge; whereas he had never married, and had been fighting the world all his days.

At first the teaching duty of the Sadleirian professorship was limited to a course of lectures extending over one of the terms of the academic year; but when the University was reformed about 1886, and part of the college funds applied to the better endowment of the University professors, the lectures were extended over two terms. For many years the attendance was small, and came almost entirely from those who had finished their career of preparation for competitive examinations; after the reform the attendance numbered about fifteen. The subject lectured on was generally that of the memoir on which the professor was for the time engaged.

The other duty of the chair — the advancement of mathematical science — was discharged in a handsome manner by the long series of memoirs that he published, ranging over every department of pure mathematics. But it was also discharged in a much less obtrusive way; he became the standing referee on the merits of mathematical papers to many societies both at home and abroad.

In 1872 he was made an honorary fellow of Trinity College, and three years later an ordinary fellow, which meant stipend as well as honour. About this time his friends subscribed for a presentation portrait. Maxwell wrote an address to the committee of subscribers who had charge of the Cayley portrait fund. The verses refer to the subjects investigated in several of Cayley's most elaborate memoirs; such as, Chapters on the Analytical Geometry of dimensions; On the theory of Determinants; Memoir on the theory of Matrices; Memoirs on skew surfaces, otherwise Scrolls; On the delineation of a Cubic Scroll, etc. [6]

In addition to his work on algebra, Cayley made fundamental contributions to algebraic geometry. Cayley and Salmon discovered the 27 lines on a cubic surface. Cayley constructed the Chow variety of all curves in projective 3-space. [7] He founded the algebro-geometric theory of ruled surfaces.

In 1876 he published a Treatise on Elliptic Functions . He took great interest in the movement for the University education of women. At Cambridge the women's colleges are Girton and Newnham. In the early days of Girton College he gave direct help in teaching, and for some years he was chairman of the council of Newnham College, in the progress of which he took the keenest interest to the last.

In 1881 he received from the Johns Hopkins University, Baltimore, where Sylvester was then professor of mathematics, an invitation to deliver a course of lectures. He accepted the invitation, and lectured at Baltimore during the first five months of 1882 on the subject of the Abelian and Theta Functions.

In 1893 Cayley became a foreign member of the Royal Netherlands Academy of Arts and Sciences. [8]

British Association presidency

In 1883 Cayley was President of the British Association for the Advancement of Science. The meeting was held at Southport, in the north of England. As the President's address is one of the great popular events of the meeting, and brings out an audience of general culture, it is usually made as little technical as possible. Cayley (1996) took for his subject the Progress of Pure Mathematics.

The Collected Papers

In 1889 the Cambridge University Press requested him to prepare his mathematical papers for publication in a collected form—a request which he appreciated very much. They are printed in quarto volumes, of which seven appeared under his own editorship. While editing these volumes, he was suffering from a painful internal malady, to which he succumbed on 26 January 1895, in the 74th year of his age. When the funeral took place, a great assemblage met in Trinity Chapel, comprising members of the University, official representatives of Russia and America, and many of the most illustrious philosophers of Britain.

The remainder of his papers were edited by Andrew Forsyth, his successor in the Sadleirian Chair. The Collected Mathematical papers number thirteen quarto volumes, and contain 967 papers. Cayley retained to the last his fondness for novel-reading and for travelling. He also took special pleasure in paintings and architecture, and he practiced water-colour painting, which he found useful sometimes in making mathematical diagrams.

Legacy

Cayley is buried in the Mill Road cemetery, Cambridge.

An 1874 portrait of Cayley by Lowes Cato Dickinson and an 1884 portrait by William Longmaid are in the collection of Trinity College, Cambridge. [9]

A number of mathematical terms are named after him:

Bibliography

See also

Related Research Articles

William Rowan Hamilton Irish mathematician and astronomer

Sir William Rowan Hamilton MRIA was an Irish mathematician, Andrews Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Ireland. He worked in both pure mathematics and mathematics for physics. He made important contributions to optics, classical mechanics and algebra. Although Hamilton was not a physicist–he regarded himself as a pure mathematician–his work was of major importance to physics, particularly his reformulation of Newtonian mechanics, now called Hamiltonian mechanics. This work has proven central to the modern study of classical field theories such as electromagnetism, and to the development of quantum mechanics. In pure mathematics, he is best known as the inventor of quaternions.

G. H. Hardy British mathematician

Godfrey Harold Hardy was an English mathematician, known for his achievements in number theory and mathematical analysis. In biology, he is known for the Hardy–Weinberg principle, a basic principle of population genetics.

Karl Menger Austrian American mathematician

Karl Menger was an Austrian-American mathematician. He was the son of the economist Carl Menger. He is credited with Menger's theorem. He worked on mathematics of algebras, algebra of geometries, curve and dimension theory, etc. Moreover, he contributed to game theory and social sciences.

The Sadleirian Professorship of Pure Mathematics is a professorship in pure mathematics within the DPMMS at the University of Cambridge. It was founded on a bequest from Lady Mary Sadleir for lectureships "for the full and clear explication and teaching that part of mathematical knowledge commonly called algebra". She died in 1706 and lectures began in 1710 but eventually these failed to attract undergraduates. In 1860 the foundation was used to establish the professorship. On 10 June 1863 Arthur Cayley was elected with the statutory duty "to explain and teach the principles of pure mathematics, and to apply himself to the advancement of that science." The stipend attached to the professorship was modest although it improved in the course of subsequent legislation.

Shing-Tung Yau American mathematician

Shing-Tung Yau is a Chinese-born naturalized American mathematician who was awarded the Fields Medal in 1982. He is currently the William Caspar Graustein Professor of Mathematics at Harvard University.

Oscar Zariski American mathematician

Oscar Zariski was a Russian-born American mathematician and one of the most influential algebraic geometers of the 20th century.

Pure mathematics Mathematics studies that are independent of any application outside mathematics

Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, but pure mathematicians are not primarily motivated by such applications. Instead, the appeal is attributed to the intellectual challenge and aesthetic beauty of working out the logical consequences of basic principles.

Louis J. Mordell American-born British number theorist (1888–1972)

Louis Joel Mordell was an American-born British mathematician, known for pioneering research in number theory. He was born in Philadelphia, United States, in a Jewish family of Lithuanian extraction.

John William Scott "Ian" Cassels, FRS was a British mathematician.

Chow Wei-Liang was a Chinese mathematician born in Shanghai, known for his work in algebraic geometry.

James Cockle Australian judge

Sir James Cockle FRS FRAS FCPS was an English lawyer and mathematician.

Andrew Forsyth 19th and 20th-century British mathematician

Prof Andrew Russell Forsyth, FRS, FRSE was a British mathematician.

Thomas Kirkman British church minister and mathematician (1806–1895)

Thomas Penyngton Kirkman FRS was a British mathematician and ordained minister of the Church of England. Despite being primarily a churchman, he maintained an active interest in research-level mathematics, and was listed by Alexander Macfarlane as one of ten leading 19th-century British mathematicians. In the 1840s, he obtained an existence theorem for Steiner triple systems that founded the field of combinatorial design theory, while the related Kirkman's schoolgirl problem is named after him.

Alan Baker (mathematician) English mathematician

Alan Baker was an English mathematician, known for his work on effective methods in number theory, in particular those arising from transcendental number theory.

Geometry Branch of mathematics

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer.

Shahn Majid British mathematician and physicist

Shahn Majid is an English pure mathematician and theoretical physicist, trained at Cambridge University and Harvard University and, since 2001, a Professor of Mathematics at the School of Mathematical Sciences, Queen Mary, University of London.

Jonathan Rosenberg (mathematician) American mathematician

Jonathan Micah Rosenberg is an American mathematician, working in algebraic topology, operator algebras, K-theory and representation theory, with applications to string theory in physics.

Arthur Buchheim (1859-1888) was a British mathematician.

References

  1. See Cayley (1858) "A Memoir on the Theory of Matrices", Philosophical Transactions of the Royal Society of London, 148 : 24 : "I have verified the theorem, in the next simplest case, of a matrix of the order 3, … but I have not thought it necessary to undertake the labour of a formal proof of the theorem in the general case of a matrix of any degree."
  2. Cayley (1854) "On the theory of groups, as depending on the symbolic equation θn = 1," Philosophical Magazine, 4th series, 7 (42) : 40–47. However, see also the criticism of this definition in: MacTutor: The abstract group concept.
  3. "Cayley, Arthur (CLY838A)". A Cambridge Alumni Database. University of Cambridge.
  4. The Records of the Honorable Society of Lincoln's Inn Vol II, Admission Register 1420 - 1893. London: Lincoln's Inn. 1896. p. 226.
  5. 1 2 Forsyth, Andrew Russell (1901). "Cayley, Arthur"  . Dictionary of National Biography (1st supplement). London: Smith, Elder & Co.
  6. "To the Committee of the Cayley Portrait Fund", 1874
  7. A. Cayley, Collected Mathematical Papers, Cambridge (1891), v. 4, 446−455. W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Cambridge (1952), v. 2, p. 388.
  8. "A. Cayley (1821 - 1895)". Royal Netherlands Academy of Arts and Sciences. Retrieved 19 April 2016.
  9. "Trinity College, University of Cambridge". BBC Your Paintings. Archived from the original on 11 May 2014. Retrieved 12 February 2018.

Sources