Atomism

Last updated

Atomism (from Greek ἄτομον, atomon, i.e. "uncuttable, indivisible") [1] [2] [3] is a natural philosophy that developed in several ancient traditions.

Ancient Greek Version of the Greek language used from roughly the 9th century BCE to the 6th century CE

The Ancient Greek language includes the forms of Greek used in Ancient Greece and the ancient world from around the 9th century BCE to the 6th century CE. It is often roughly divided into the Archaic period, Classical period, and Hellenistic period. It is antedated in the second millennium BCE by Mycenaean Greek and succeeded by medieval Greek.

Natural philosophy ancient philosophical study of nature and physical universe that was dominant before the development of modern science. It is considered to be the precursor of natural science

Natural philosophy or philosophy of nature was the philosophical study of nature and the physical universe that was dominant before the development of modern science. It is considered to be the precursor of natural science.

Contents

References to the concept of atomism and its atoms appeared in both ancient Greek and ancient Indian philosophical traditions. The ancient Greek atomists theorized that nature consists of two fundamental principles: atom and void. Unlike their modern scientific namesake in atomic theory, philosophical atoms come in an infinite variety of shapes and sizes, each indestructible, immutable and surrounded by a void where they collide with the others or hook together forming a cluster. Clusters of different shapes, arrangements, and positions give rise to the various macroscopic substances in the world. [4] [5]

Ancient Greek philosophy

Ancient Greek philosophy arose in the 6th century BC and continued throughout the Hellenistic period and the period in which Greece and most Greek-inhabited lands were part of the Roman Empire. Philosophy was used to make sense out of the world in a non-religious way. It dealt with a wide variety of subjects, including astronomy, mathematics, political philosophy, ethics, metaphysics, ontology, logic, biology, rhetoric and aesthetics.

Atomic theory

In chemistry and physics, atomic theory is a scientific theory of the nature of matter, which states that matter is composed of discrete units called atoms. It began as a philosophical concept in ancient Greece and entered the scientific mainstream in the early 19th century when discoveries in the field of chemistry showed that matter did indeed behave as if it were made up of atoms.

The particles of chemical matter for which chemists and other natural philosophers of the early 19th century found experimental evidence were thought to be indivisible, and therefore were given[ by whom? ] the name "atom", long used by the atomist philosophy. Although the connection to historical atomism is at best tenuous, elementary particles have become a modern analog of philosophical atoms.

Elementary particle Quantum particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle with no sub structure, thus not composed of other particles. Particles currently thought to be elementary include the fundamental fermions, which generally are "matter particles" and "antimatter particles", as well as the fundamental bosons, which generally are "force particles" that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle.

Reductionism

Philosophical atomism is a reductive argument; not only that everything is composed of atoms and void, but that nothing they compose really exists: the only things that really exist are atoms ricocheting off each other mechanistically in an otherwise empty void. Atomism stands in contrast to a substance theory wherein a prime material continuum remains qualitatively invariant under division (for example, the ratio of the four classical elements would be the same in any portion of a homogeneous material).

Reductionism Philosophical view explaining systems in terms of smaller parts

Reductionism is any of several related philosophical ideas regarding the associations between phenomena which can be described in terms of other simpler or more fundamental phenomena.

Mechanism is the belief that natural wholes are like complicated machines or artefacts, composed of parts lacking any intrinsic relationship to each other. Thus, the source of an apparent thing's activities is not the whole itself, but its parts or an external influence on the parts.

Substance theory, or substance–attribute theory, is an ontological theory about objecthood positing that a substance is distinct from its properties. A thing-in-itself is a property-bearer that must be distinguished from the properties it bears.

Indian Buddhists, such as Dharmakirti and others, also developed distinctive theories of atomism, for example, involving momentary (instantaneous) atoms, that flash in and out of existence (kalapas).

India Country in South Asia

India, also known as the Republic of India, is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the south, the Arabian Sea on the southwest, and the Bay of Bengal on the southeast, it shares land borders with Pakistan to the west; China, Nepal, and Bhutan to the northeast; and Bangladesh and Myanmar to the east. In the Indian Ocean, India is in the vicinity of Sri Lanka and the Maldives; its Andaman and Nicobar Islands share a maritime border with Thailand and Indonesia.

Dharmakirti Buddhist writer

Dharmakīrti was an influential Indian Buddhist philosopher who worked at Nālandā. He was one of the key scholars of epistemology (pramana) in Buddhist philosophy, and is associated with the Yogācāra and Sautrāntika schools. He was also one of the primary theorists of Buddhist atomism. His works influenced the scholars of Mīmāṃsā, Nyaya and Shaivism schools of Hindu philosophy as well as scholars of Jainism.

Antiquity

Greek atomism

In the 5th century BCE, Leucippus and his pupil Democritus proposed that all matter was composed of small indivisible particles called atoms. [6] [7] [8] [9] Nothing whatsoever is known about Leucippus except that he was the teacher of Democritus. [9] Democritus, by contrast, was a prolific writer, who wrote over eighty known treatises, none of which have survived to the present day complete. [9] However, a massive number of fragments and quotations of his writings have survived. [9] These are the main source of information on his teachings about atoms. [9] Democritus's argument for the existence of atoms hinged on the idea that it is impossible to keep dividing matter for infinity and that matter must therefore be made up of extremely tiny particles. [9]

Leucippus Ancient Greek scholar

Leucippus is reported in some ancient sources to have been a philosopher who was the earliest Greek to develop the theory of atomism—the idea that everything is composed entirely of various imperishable, indivisible elements called atoms. Leucippus often appears as the master to his pupil Democritus, a philosopher also touted as the originator of the atomic theory.

Democritus Ancient Greek philosopher, pupil of Leucippus, founder of the atomic theory

Democritus was an Ancient Greek pre-Socratic philosopher primarily remembered today for his formulation of an atomic theory of the universe.

Democritus believed that atoms are too small for human senses to detect, they are infinitely many, they come in infinitely many varieties, and that they have always existed. [9] They float in a vacuum, which Democritus called the "void", [9] and they vary in form, order, and posture. [9] Some atoms, he maintained, are convex, others concave, some shaped like hooks, and others like eyes. [9] They are constantly moving and colliding into each other. [9] Democritus wrote that atoms and void are the only things that exist and that all other things are merely said to exist by social convention. [9] The objects humans see in everyday life are composed of many atoms united by random collisions and their forms and materials are determined by what kinds of atom make them up. [9] Likewise, human perceptions are caused by atoms as well. [9] Bitterness is caused by small, angular, jagged atoms passing across the tongue; [9] whereas sweetness is caused by larger, smoother, more rounded atoms passing across the tongue. [9]

Parmenides denied the existence of motion, change and void. He believed all existence to be a single, all-encompassing and unchanging mass (a concept known as monism), and that change and motion were mere illusions. This conclusion, as well as the reasoning that led to it, may indeed seem baffling to the modern empirical mind, but Parmenides explicitly rejected sensory experience as the path to an understanding of the universe, and instead used purely abstract reasoning. Firstly, he believed there is no such thing as void, equating it with non-being (i.e. "if the void is, then it is not nothing; therefore it is not the void"). This in turn meant that motion is impossible, because there is no void to move into. [10] [11] He also wrote all that is must be an indivisible unity, for if it were manifold, then there would have to be a void that could divide it (and he did not believe the void exists). Finally, he stated that the all encompassing Unity is unchanging, for the Unity already encompasses all that is and can be. [12]

Democritus accepted most of Parmenides' arguments, except for the idea that change is an illusion. He believed change was real, and if it was not then at least the illusion had to be explained. He thus supported the concept of void, and stated that the universe is made up of many Parmenidean entities that move around in the void. [10] The void is infinite and provides the space in which the atoms can pack or scatter differently. The different possible packings and scatterings within the void make up the shifting outlines and bulk of the objects that organisms feel, see, eat, hear, smell, and taste. While organisms may feel hot or cold, hot and cold actually have no real existence. They are simply sensations produced in organisms by the different packings and scatterings of the atoms in the void that compose the object that organisms sense as being "hot" or "cold".

The work of Democritus only survives in secondhand reports, some of which are unreliable or conflicting. Much of the best evidence of Democritus' theory of atomism is reported by Aristotle in his discussions of Democritus' and Plato's contrasting views on the types of indivisibles composing the natural world. [13]

Geometry and atoms

ElementPolyhedronNumber of FacesNumber of Triangles
Fire Tetrahedron

(Animation)

Tetrahedron.jpg 424
Air Octahedron

(Animation)

Octahedron.svg 848
Water Icosahedron

(Animation)

Icosahedron.jpg 20120
Earth Cube

(Animation)

Hexahedron.jpg 624
Geometrical simple bodies according to Plato

Plato (c. 427 – c. 347 BCE), if he had been familiar with the atomism of Democritus, would have objected to its mechanistic materialism. He argued that atoms just crashing into other atoms could never produce the beauty and form of the world. In Plato's Timaeus (28b–29a) the character of Timeaus insisted that the cosmos was not eternal but was created, although its creator framed it after an eternal, unchanging model.

One part of that creation were the four simple bodies of fire, air, water, and earth. But Plato did not consider these corpuscles to be the most basic level of reality, for in his view they were made up of an unchanging level of reality, which was mathematical. These simple bodies were geometric solids, the faces of which were, in turn, made up of triangles. The square faces of the cube were each made up of four isosceles right-angled triangles and the triangular faces of the tetrahedron, octahedron, and icosahedron were each made up of six right-angled triangles.

He postulated the geometric structure of the simple bodies of the four elements as summarized in the adjacent table. The cube, with its flat base and stability, was assigned to earth; the tetrahedron was assigned to fire because its penetrating points and sharp edges made it mobile. The points and edges of the octahedron and icosahedron were blunter and so these less mobile bodies were assigned to air and water. Since the simple bodies could be decomposed into triangles, and the triangles reassembled into atoms of different elements, Plato's model offered a plausible account of changes among the primary substances. [14] [15]

Rejection in Aristotelianism

Sometime before 330 BCE Aristotle asserted that the elements of fire, air, earth, and water were not made of atoms, but were continuous. Aristotle considered the existence of a void, which was required by atomic theories, to violate physical principles. Change took place not by the rearrangement of atoms to make new structures, but by transformation of matter from what it was in potential to a new actuality. A piece of wet clay, when acted upon by a potter, takes on its potential to be an actual drinking mug. Aristotle has often been criticized for rejecting atomism, but in ancient Greece the atomic theories of Democritus remained "pure speculations, incapable of being put to any experimental test. Granted that atomism was, in the long run, to prove far more fruitful than any qualitative theory of matter, in the short run the theory that Aristotle proposed must have seemed in some respects more promising". [16] [17] [ unbalanced opinion? ]

Minima naturalia were theorized by Aristotle as the smallest parts into which a homogeneous natural substance (e.g., flesh, bone, or wood) could be divided and still retain its essential character. Unlike the atomism of Democritus, the Aristotelian "natural minimum" was not conceptualized as physically indivisible. Instead, the concept was rooted in Aristotle's hylomorphic worldview, which held that every physical thing is a compound of matter (Greek hyle) and an immaterial substantial form (Greek morphe) that imparts its essential nature and structure. For instance, a rubber ball for a hylomorphist like Aristotle would be rubber (matter) structured by spherical shape (form). Aristotle's intuition was that there is some smallest size beyond which matter could no longer be structured as flesh, or bone, or wood, or some other such organic substance that for Aristotle, living before the microscope, could be considered homogeneous. For instance, if flesh were divided beyond its natural minimum, what would be left might be a large amount of the element water, and smaller amounts of the other elements. But whatever water or other elements were left, they would no longer have the "nature" of flesh: in hylomorphic terms, they would no longer be matter structured by the form of flesh; instead the remaining water, e.g., would be matter structured by the form of water, not the form of flesh.

Later ancient atomism

Epicurus (341270 BCE) studied atomism with Nausiphanes who had been a student of Democritus. Although Epicurus was certain of the existence of atoms and the void, he was less sure we could adequately explain specific natural phenomena such as earthquakes, lightning, comets, or the phases of the Moon (Lloyd 1973, 256). Few of Epicurus' writings survive and those that do reflect his interest in applying Democritus' theories to assist people in taking responsibility for themselves and for their own happiness—since he held there are no gods around that can help them. He understood gods' role as moral ideals.

His ideas are also represented in the works of his follower Lucretius, who wrote On the Nature of Things . This scientific work in poetic form illustrates several segments of Epicurean theory on how the universe came into its current stage and it shows that the phenomena we perceive are actually composite forms. The atoms and the void are eternal and in constant motion. Atomic collisions create objects, which are still composed of the same eternal atoms whose motion for a while is incorporated into the created entity. Human sensations and meteorological phenomena are also explained by Lucretius in terms of atomic motion.

Atomism and ethics

Some later philosophers attributed the idea that man created gods and that gods did not create man to Democritus. For example, Sextus Empiricus noted:

Some people think that we arrived at the idea of gods from the remarkable things that happen in the world. Democritus ... says that the people of ancient times were frightened by happenings in the heavens such as thunder, lightning, ..., and thought that they were caused by gods. [18]

Three hundred years after Epicurus, Lucretius in his epic poem On the Nature of Things would depict him as the hero who crushed the monster Religion through educating the people in what was possible in the atoms and what was not possible in the atoms. However, Epicurus expressed a non-aggressive attitude characterized by his statement: "The man who best knows how to meet external threats makes into one family all the creatures he can; and those he can not, he at any rate does not treat as aliens; and where he finds even this impossible, he avoids all dealings, and, so far as is advantageous, excludes them from his life."

Indian atomism

In ancient Indian philosophy, preliminary instances of atomism are found in the works of Vedic sage Aruni, who lived in the 8th century BCE, especially his proposition that "particles too small to be seen mass together into the substances and objects of experience". [19] Later, the Charvaka, Jain, [20] [21] and Ajivika schools of atomism originated as early as the 7th century BCE. [22] [23] [24] Bhattacharya posits that Charvaka may have been one of several atheistic, materialist schools that existed in ancient India. [25] [26] The Nyaya and Vaisheshika schools later developed theories on how atoms combined into more complex objects. [27]

Several of these doctrines of atomism are, in some respects, "suggestively similar" to that of Democritus. [28] McEvilley (2002) assumes that such similarities are due to extensive cultural contact and diffusion, probably in either direction. [29]

The Nyaya Vaisesika school developed one of the earliest forms of atomism; scholars[ who? ] date the Nyaya and Vaisesika texts from the 6th to 1st centuries BC.[ citation needed ] Vaisesika atomists posited the four elemental atom types, but in Vaisesika physics atoms had 25 different possible qualities, divided between general extensive properties and specific (intensive) properties. Like the Jaina school, the NyayaVaisesika atomists had elaborate theories of how atoms combine. In both Jaina and Vaisesika atomism, atoms first combine in pairs (dyads), and then group into trios of pairs (triads), which are the smallest visible units of matter. [30]

The Buddhist atomists had very qualitative, Aristotelian-style atomic theory. According to ancient Buddhist atomism, which probably began developing before the 4th century BCE, there are four kinds of atoms, corresponding to the standard elements. Each of these elements has a specific property, such as solidity or motion, and performs a specific function in mixtures, such as providing support or causing growth. Like the Hindu Jains, the Buddhists were able to integrate a theory of atomism with their theological presuppositions. Later Indian Buddhist philosophers, such as Dharmakirti and Dignāga, considered atoms to be point-sized, durationless, and made of energy.

Some of canonical texts of Jainism make reference to matter and atoms (called paramāṇu, a term already used in Yajnavalkya and Yoga Sutra), including Pancastikayasara , Kalpasutra and Tattvarthasutra .[ citation needed ] The Jains envisioned the world as consisting wholly of atoms, except for souls. Atoms were considered as the basic building blocks of all matter. Each atom had "one kind of taste, one smell, one color, and two kinds of touch", though it is unclear what was meant by "kind of touch".[ citation needed ][ clarification needed ] Atoms can exist in one of two states: subtle, in which case they can fit in infinitesimally small spaces, and gross, in which case they have extension and occupy a finite space.[ citation needed ] The texts also give "detailed theories" of how atoms could combine, react, vibrate, move, and perform other actions, all of which were thoroughly deterministic.[ citation needed ]

Middle Ages

Medieval Buddhism

Medieval Buddhist atomism, flourishing in ca. the 7th century, was very different from the atomist doctrines taught in early Samkhya Buddhism. Medieval Buddhist philosophers Dharmakirti and Dignāga considered atoms to be point-sized, durationless, and made of energy. In discussing the two systems, Fyodor Shcherbatskoy (1930) stresses their commonality, the postulate of "absolute qualities" (guna-dharma) underlying all empirical phenomena. [31]

Still later, the Abhidhammattha-sangaha, a text dated to the 11th or 12th century, postulates the existence of rupa-kalapa , imagined as the smallest units of the physical world, of varying elementary composition. [32] Invisible under normal circumstances, the rupa-kalapa are said to become visible as a result of meditative samadhi. [33]

Medieval Islam

Atomistic philosophies are found very early in Islamic philosophy and was influenced by earlier Greek and to some extent Indian philosophy. [34] [35] Like both the Greek and Indian versions, Islamic atomism was a charged topic that had the potential for conflict with the prevalent religious orthodoxy,[ citation needed ] but it was instead more often favoured by orthodox Islamic theologians. It was such a fertile and flexible idea that, as in Greece and India, it flourished in some leading schools of Islamic thought.

The most successful form of Islamic atomism was in the Asharite school of Islamic theology, most notably in the work of the theologian al-Ghazali (10581111). In Asharite atomism, atoms are the only perpetual, material things in existence, and all else in the world is "accidental" meaning something that lasts for only an instant. Nothing accidental can be the cause of anything else, except perception, as it exists for a moment. Contingent events are not subject to natural physical causes, but are the direct result of God's constant intervention, without which nothing could happen. Thus nature is completely dependent on God, which meshes with other Asharite Islamic ideas on causation, or the lack thereof (Gardet 2001). Al-Ghazali also used the theory to support his theory of occasionalism. In a sense, the Asharite theory of atomism has far more in common with Indian atomism than it does with Greek atomism. [36]

Other traditions in Islam rejected the atomism of the Asharites and expounded on many Greek texts, especially those of Aristotle. An active school of philosophers in Al-Andalus, including the noted commentator Averroes (11261198 CE) explicitly rejected the thought of al-Ghazali and turned to an extensive evaluation of the thought of Aristotle. Averroes commented in detail on most of the works of Aristotle and his commentaries became very influential in Jewish and Christian scholastic thought.

Medieval Christendom

While Aristotelian philosophy eclipsed the importance of the atomists in late Roman and medieval Europe, their work was still preserved and exposited through commentaries on the works of Aristotle. In the 2nd century, Galen (AD 129216) presented extensive discussions of the Greek atomists, especially Epicurus, in his Aristotle commentaries. According to historian of atomism Joshua Gregory, there was no serious work done with atomism from the time of Galen until Gassendi and Descartes resurrected it in the 17th century; "the gap between these two 'modern naturalists' and the ancient Atomists marked "the exile of the atom" and "it is universally admitted that the Middle Ages had abandoned Atomism, and virtually lost it."

However, although the ancient atomists' works were unavailable, Scholastic thinkers still had Aristotle's critiques of atomism. In medieval universities there were expressions of atomism. For example, in the 14th century Nicholas of Autrecourt considered that matter, space, and time were all made up of indivisible atoms, points, and instants and that all generation and corruption took place by the rearrangement of material atoms. The similarities of his ideas with those of al-Ghazali suggest that Nicholas may have been familiar with Ghazali's work, perhaps through Averroes' refutation of it (Marmara, 197374).

Although the atomism of Epicurus had fallen out of favor in the centuries of Scholasticism, the minima naturalia of Aristotelianism received extensive consideration. Speculation on minima naturalia provided philosophical background for the mechanistic philosophy of early modern thinkers such as Descartes, and for the alchemical works of Geber and Daniel Sennert, who in turn influenced the corpuscularian alchemist Robert Boyle, one of the founders of modern chemistry. [37] [38]

A chief theme in late Roman and Scholastic commentary on this concept is reconciling minima naturalia with the general Aristotelian principle of infinite divisibility. Commentators like John Philoponus and Thomas Aquinas reconciled these aspects of Aristotle's thought by distinguishing between mathematical and "natural" divisibility. With few exceptions, much of the curriculum in the universities of Europe was based on such Aristotelianism for most of the Middle Ages. [39]

Atomist renaissance

In the 17th century, a renewed interest arose in Epicurean atomism and corpuscularianism as a hybrid or an alternative to Aristotelian physics. The main figures in the rebirth of atomism were René Descartes, Pierre Gassendi, and Robert Boyle, as well as other notable figures.

One of the first groups of atomists in England was a cadre of amateur scientists known as the Northumberland circle, led by Henry Percy, 9th Earl of Northumberland (15641632). Although they published little of account, they helped to disseminate atomistic ideas among the burgeoning scientific culture of England, and may have been particularly influential to Francis Bacon, who became an atomist around 1605, though he later rejected some of the claims of atomism. Though they revived the classical form of atomism, this group was among the scientific avant-garde: the Northumberland circle contained nearly half of the confirmed Copernicans prior to 1610 (the year of Galileo's The Starry Messenger). Other influential atomists of late 16th and early 17th centuries include Giordano Bruno, Thomas Hobbes (who also changed his stance on atomism late in his career), and Thomas Hariot. A number of different atomistic theories were blossoming in France at this time, as well (Clericuzio 2000).

Galileo Galilei (15641642) was an advocate of atomism in his 1612, Discourse on Floating Bodies (Redondi 1969). In The Assayer , Galileo offered a more complete physical system based on a corpuscular theory of matter, in which all phenomena—with the exception of sound—are produced by "matter in motion". Galileo identified some basic problems with Aristotelian physics through his experiments. He utilized a theory of atomism as a partial replacement, but he was never unequivocally committed to it. For example, his experiments with falling bodies and inclined planes led him to the concepts of circular inertial motion and accelerating free-fall. The current Aristotelian theories of impetus and terrestrial motion were inadequate to explain these. While atomism did not explain the law of fall either, it was a more promising framework in which to develop an explanation because motion was conserved in ancient atomism (unlike Aristotelian physics).

René Descartes' (15961650) "mechanical" philosophy of corpuscularism had much in common with atomism, and is considered, in some senses, to be a different version of it. Descartes thought everything physical in the universe to be made of tiny vortices of matter. Like the ancient atomists, Descartes claimed that sensations, such as taste or temperature, are caused by the shape and size of tiny pieces of matter. The main difference between atomism and Descartes' concept was the existence of the void. For him, there could be no vacuum, and all matter was constantly swirling to prevent a void as corpuscles moved through other matter. Another key distinction between Descartes' view and classical atomism is the mind/body duality of Descartes, which allowed for an independent realm of existence for thought, soul, and most importantly, God. Gassendi's concept was closer to classical atomism, but with no atheistic overtone.

Pierre Gassendi (15921655) was a Catholic priest from France who was also an avid natural philosopher. He was particularly intrigued by the Greek atomists, so he set out to "purify" atomism from its heretical and atheistic philosophical conclusions (Dijksterhius 1969). Gassendi formulated his atomistic conception of mechanical philosophy partly in response to Descartes; he particularly opposed Descartes' reductionist view that only purely mechanical explanations of physics are valid, as well as the application of geometry to the whole of physics (Clericuzio 2000).

Johann Chrysostom Magnenus (c. 1590 c. 1679) published his Democritus reviviscens in 1646. Magnenus was the first to arrive at a scientific estimate of the size of an "atom" (i.e. of what would today be called a molecule). Measuring how much incense had to be burned before it could be smelled everywhere in a large church, he calculated the number of molecules in a grain of incense to be of the order 1018, only about one order of magnitude below the actual figure. [40]

Corpuscularianism

Corpuscularianism is similar to atomism, except that where atoms were supposed to be indivisible, corpuscles could in principle be divided. In this manner, for example, it was theorized that mercury could penetrate into metals and modify their inner structure, a step on the way towards transmutative production of gold. Corpuscularianism was associated by its leading proponents with the idea that some of the properties that objects appear to have are artifacts of the perceiving mind: 'secondary' qualities as distinguished from 'primary' qualities. [41] Not all corpuscularianism made use of the primary-secondary quality distinction, however. An influential tradition in medieval and early modern alchemy argued that chemical analysis revealed the existence of robust corpuscles that retained their identity in chemical compounds (to use the modern term). William R. Newman has dubbed this approach to matter theory "chymical atomism," and has argued for its significance to both the mechanical philosophy and to the chemical atomism that emerged in the early 19th century. [42] Corpuscularianism stayed a dominant theory over the next several hundred years and retained its links with alchemy in the work of scientists such as Robert Boyle and Isaac Newton in the 17th century. [43] [44] It was used by Newton, for instance, in his development of the corpuscular theory of light. The form that came to be accepted by most English scientists after Robert Boyle (1627–1692) was an amalgam of the systems of Descartes and Gassendi. In The Sceptical Chymist (1661), Boyle demonstrates problems that arise from chemistry, and offers up atomism as a possible explanation. The unifying principle that would eventually lead to the acceptance of a hybrid corpuscular–atomism was mechanical philosophy, which became widely accepted by physical sciences.

Modern atomic theory

By the late 18th century, the useful practices of engineering and technology began to influence philosophical explanations for the composition of matter. Those who speculated on the ultimate nature of matter began to verify their "thought experiments" with some repeatable demonstrations, when they could.

Roger Boscovich provided the first general mathematical theory of atomism, based on the ideas of Newton and Leibniz but transforming them so as to provide a programme for atomic physics. [45]

In 1808, John Dalton assimilated the known experimental work of many people to summarize the empirical evidence on the composition of matter. He noticed that distilled water everywhere analyzed to the same elements, hydrogen and oxygen. Similarly, other purified substances decomposed to the same elements in the same proportions by weight.

Therefore we may conclude that the ultimate particles of all homogeneous bodies are perfectly alike in weight, figure, etc. In other words, every particle of water is like every other particle of water; every particle of hydrogen is like every other particle of hydrogen, etc.

Furthermore, he concluded that there was a unique atom for each element, using Lavoisier's definition of an element as a substance that could not be analyzed into something simpler. Thus, Dalton concluded the following.

Chemical analysis and synthesis go no farther than to the separation of particles one from another, and to their reunion. No new creation or destruction of matter is within the reach of chemical agency. We might as well attempt to introduce a new planet into the solar system, or to annihilate one already in existence, as to create or destroy a particle of hydrogen. All the changes we can produce, consist in separating particles that are in a state of cohesion or combination, and joining those that were previously at a distance.

And then he proceeded to give a list of relative weights in the compositions of several common compounds, summarizing: [46]

1st. That water is a binary compound of hydrogen and oxygen, and the relative weights of the two elementary atoms are as 1:7, nearly;
2nd. That ammonia is a binary compound of hydrogen and azote nitrogen, and the relative weights of the two atoms are as 1:5, nearly...

Dalton concluded that the fixed proportions of elements by weight suggested that the atoms of one element combined with only a limited number of atoms of the other elements to form the substances that he listed.

Dalton's atomic theory remained controversial throughout the 19th century. [47] Whilst the Law of definite proportion was accepted, the hypothesis that this was due to atoms was not so widely accepted. For example, in 1826 when Sir Humphry Davy presented Dalton the Royal Medal from the Royal Society, Davy said that the theory only became useful when the atomic conjecture was ignored. [48] Sir Benjamin Collins Brodie in 1866 published the first part of his Calculus of Chemical Operations [49] as a non-atomic alternative to the Atomic Theory. He described atomic theory as a 'Thoroughly materialistic bit of joiners work'. [50] Alexander Williamson used his Presidential Address to the London Chemical Society in 1869 [51] to defend the Atomic Theory against its critics and doubters. This in turn led to further meetings at which the positivists again attacked the supposition that there were atoms. The matter was finally resolved in Dalton's favour in the early 20th century with the rise of atomic physics.

Atoms and molecules had long been theorized as the constituents of matter, and Albert Einstein published a paper in 1905 that explained in precise detail how the motion that Brown had observed was a result of the pollen being moved by individual water molecules, making one of his first big contributions to science. This explanation of Brownian motion served as convincing evidence that atoms and molecules exist, and was further verified experimentally by Jean Perrin in 1908. Perrin was awarded the Nobel Prize in Physics in 1926 "for his work on the discontinuous structure of matter". The direction of the force of atomic bombardment is constantly changing, and at different times the particle is hit more on one side than another, leading to the seemingly random nature of the motion.

See also

Notes

  1. ἄτομον . Liddell, Henry George ; Scott, Robert ; A Greek–English Lexicon at the Perseus Project
  2. "atom". Online Etymology Dictionary.
  3. The term 'atomism' is recorded in English since 1670–80 ( Random House Webster's Unabridged Dictionary , 2001, "atomism").
  4. Aristotle, Metaphysics I, 4, 985b 1015.
  5. Berryman, Sylvia, "Ancient Atomism", The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), Edward N. Zalta (ed.), online
  6. The atomists, Leucippus and Democritus: fragments, a text and translation with a commentary by C.C.W. Taylor, University of Toronto Press Incorporated 1999, ISBN   0-8020-4390-9, pp. 157-158.
  7. Pullman, Bernard (1998). The Atom in the History of Human Thought. Oxford, England: Oxford University Press. pp. 31–33. ISBN   978-0-19-515040-7.
  8. Cohen, Henri; Lefebvre, Claire, eds. (2017). Handbook of Categorization in Cognitive Science (Second ed.). Amsterdam, The Netherlands: Elsevier. p. 427. ISBN   978-0-08-101107-2.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Kenny, Anthony (2004). Ancient Philosophy. A New History of Western Philosophy. 1. Oxford, England: Oxford University Press. pp. 26–28. ISBN   0-19-875273-3.
  10. 1 2 Andrew G. van Melsen (1952). From Atomos to Atom. Mineola, N.Y.: Dover Publications. ISBN   978-0486495842.
  11. Bertrand Russel (1946). History of Western Philosophy. London: Routledge. p. 75. ISBN   978-0415325059.
  12. Andrew G. van Melsen. (1952). From Atomos to Atom: The History and Concept of the Atom. Dover Phoenix Editions. ISBN   0-486-49584-1
  13. Berryman, Sylvia, "Democritus", The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), Edward N. Zalta (ed.), http://plato.stanford.edu/archives/fall2008/entries/democritus
  14. Lloyd, Geoffrey (1970). Early Greek Science: Thales to Aristotle. London; New York: Chatto and Windus; W. W. Norton & Company. pp. 74–77. ISBN   978-0-393-00583-7.
  15. Cornford, Francis Macdonald (1957). Plato's Cosmology: The Timaeus of Plato. New York: Liberal Arts Press. pp. 210–239. ISBN   978-0-87220-386-0.
  16. Lloyd, Geoffrey (1968). Aristotle: The Growth and Structure of his Thought. Cambridge: Cambridge University Press. p. 165. ISBN   978-0-521-09456-6.
  17. Lloyd, Geoffrey (1970). Early Greek Science: Thales to Aristotle. London; New York: Chatto and Windus; W. W. Norton & Company. pp. 108–109. ISBN   978-0-393-00583-7.
  18. Taylor, C. C. W. (1999). The Atomists, Leucippus and Democritus: a text and translation with commentary by C. C. W. Taylor. Toronto; Buffalo: University of Toronto Press. ISBN   978-0-8020-4390-0.
  19. Thomas, McEvilley (2002). The shape of ancient thought : comparative studies in Greek and Indian philosophies. New York: Allworth Press. ISBN   1581152035. OCLC   48013687.
  20. Gangopadhyaya, Mrinalkanti (1981). Indian Atomism: History and Sources. Atlantic Highlands, New Jersey: Humanities Press. ISBN   978-0-391-02177-8. OCLC   10916778.
  21. Iannone, A. Pablo (2001). Dictionary of World Philosophy. Routledge. pp. 83, 356. ISBN   978-0-415-17995-9. OCLC   44541769.
  22. ( Radhakrishnan 1957 , pp. 227–249)
  23. John M. Koller (1977), Skepticism in Early Indian Thought, Philosophy East and West, 27(2): 155-164
  24. Dale Riepe (1996), Naturalistic Tradition in Indian Thought, Motilal Banarsidass, ISBN   978-8120812932, pages 53-58
  25. Ramkrishna Bhattacharya (2013), The base text and its commentaries: Problem of representing and understanding the Charvaka / Lokayata, Argument: Biannual Philosophical Journal, Issue 1, Volume 3, pages 133-150
  26. Thomas McEvilley, The Shape of Ancient Thought: Comparative Studies in Greek and Indian Philosophies, Allwarth Press, 2002, pp. 317–321, ISBN   1-58115-203-5.
  27. Richard King, Indian philosophy: an introduction to Hindu and Buddhist thought, Edinburgh University Press, 1999, ISBN   0-7486-0954-7, pp. 105-107.
  28. Will Durant wrote in Our Oriental Heritage (2011): "Two systems of Indian thought propound physical theories suggestively similar to those of Greece. Kanada, founder of the Vaisheshika philosophy, held that the world was composed of atoms as many in kind as the various elements. The Jains more nearly approximated to Democritus by teaching that all atoms were of the same kind, producing different effects by diverse modes of combinations. The Vaisheshika]] believed light and heat to be varieties of the same substance; Udayana taught that all heat comes from the sun; and Vachaspati, like Newton, interpreted light as composed of minute particles emitted by substances and striking the eye."[ page needed ]
  29. Jeremy D. Popkin (ed.), The Legacies of Richard Popkin (2008), p. 53.
  30. Teresi, Dick (2003). Lost Discoveries: The Ancient Roots of Modern Science. Simon & Schuster. pp. 213–214. ISBN   978-0-7432-4379-7.
  31. "The Buddhists denied the existence of substantial matter altogether. Movement consists for them of moments, it is a staccato movement, momentary flashes of a stream of energy... "Everything is evanescent," ... says the Buddhist, because there is no stuff ... Both systems [Sānkhya and later Indian Buddhism] share in common a tendency to push the analysis of Existence up to its minutest, last elements which are imagined as absolute qualities, or things possessing only one unique quality. They are called "qualities" (guna-dharma) in both systems in the sense of absolute qualities, a kind of atomic, or intra-atomic, energies of which the empirical things are composed. Both systems, therefore, agree in denying the objective reality of the categories of Substance and Quality, ... and of the relation of Inference uniting them. There is in Sānkhya philosophy no separate existence of qualities. What we call quality is but a particular manifestation of a subtle entity. To every new unit of quality corresponds a subtle quantum of matter which is called guna "quality", but represents a subtle substantive entity. The same applies to early Buddhism where all qualities are substantive ... or, more precisely, dynamic entities, although they are also called dharmas ("qualities")." Stcherbatsky (1962 [1930]). Vol. 1. p. 19.
  32. Abhidhammattha-sangaha, Britannica Online (1998, 2005).
  33. Shankman, Richard (2008), The Experience of Samadhi: An In-depth Exploration of Buddhist Meditation, Shambhala, p. 178
  34. Saeed, Abdullah (2006). Islamic Thought: An Introduction. Routledge. p. 95. ISBN   978-0415364096.
  35. Michael Marmura (1976). "God and his creation:Two medieval Islamic views". In R. M. Savory (ed.). Introduction to Islamic Civilization. Cambridge University Press. p. 49.
  36. Shlomo Pines (1986). Studies in Arabic versions of Greek texts and in mediaeval science. 2. Brill Publishers. pp. 355–6. ISBN   978-965-223-626-5.
  37. John Emery Murdoch; Christoph Herbert Lüthy; William Royall Newman (1 January 2001). "The Medieval and Renaissance Tradition of Minima Naturalia". Late Medieval and Early Modern Corpuscular Matter Theories. BRILL. pp. 91–133. ISBN   978-90-04-11516-3.
  38. Alan Chalmers (4 June 2009). The Scientist's Atom and the Philosopher's Stone: How Science Succeeded and Philosophy Failed to Gain Knowledge of Atoms. Springer. pp. 75–96. ISBN   978-90-481-2362-9.
  39. Kargon 1966[ page needed ]
  40. Three Klaus Ruedenberg, W. H. Eugen Schwarz, Millennia of Atoms and Molecules (2013), Chapter 1, pp. 1–45, DOI: 10.1021/bk-2013-1122.ch001.
  41. The Mechanical Philosophy Archived June 11, 2008, at the Wayback Machine - Early modern 'atomism' ("corpuscularianism" as it was known)
  42. William R. Newman, “The Significance of ‘Chymical Atomism’,” in Edith Sylla and W. R. Newman, eds., Evidence and Interpretation: Studies on Early Science and Medicine in Honor of John E. Murdoch (Leiden: Brill, 2009), pp. 248-264 and Newman, Atoms and Alchemy: Chymistry and the Experimental Origins of the Scientific Revolution (Chicago: University of Chicago Press, 2006)
  43. Levere, Trevor, H. (2001). Transforming Matter – A History of Chemistry for Alchemy to the Buckyball. The Johns Hopkins University Press. ISBN   978-0-8018-6610-4.
  44. Corpuscularianism - Philosophical Dictionary
  45. Lancelot Law Whyte Essay on Atomism, 1961, p 54.
  46. "Archived copy". Archived from the original on 2003-08-02. Retrieved 2003-07-28.CS1 maint: Archived copy as title (link)
  47. Brock(ed), W.H. (1967). The Atomic Debates. Leicester University Press. p. 1.CS1 maint: Extra text: authors list (link)
  48. Davy(ed), J. Collected Works of Sir Humphrey Davy. Bart. p. 93 vol 8.CS1 maint: Extra text: authors list (link)
  49. Brodie, Sir Benjamin Collins (1866). Philosophical Transactions of the Royal Society. pp. 781–859 vol I56.
  50. Brock(ed), W.H. (1967). The Atomic Debates. Leicester University Press. p. 12.CS1 maint: Extra text: authors list (link)
  51. Brock(ed), W.H. (1967). The Atomic Debates. Leicester University Press. p. 15.CS1 maint: Extra text: authors list (link)

Related Research Articles

Epicurus ancient Greek philosopher

Epicurus was an ancient Greek philosopher and sage who founded a highly influential school of philosophy now called Epicureanism. He was born on the Greek island of Samos to Athenian parents. Influenced by Democritus, Aristotle, Pyrrho, and possibly the Cynics, he turned against the Platonism of his day and established his own school, known as "the Garden", in Athens. Epicurus and his followers were known for eating simple meals and discussing a wide range of philosophical subjects, and he openly allowed women to join the school as a matter of policy. An extremely prolific writer, he is said to have originally written over 300 works on various subjects, but the vast majority of these writings have been lost. Only three letters written by him — the Letters to Menoeceus, Pythocles, and Herodotus — and two collections of quotes — the Principle Doctrines and the Vatican Sayings — have survived intact, along with a few fragments and quotations of his other writings. Most knowledge of his teachings comes from later authors, particularly the Roman poet Lucretius, the biographer Diogenes Laërtius, the statesman Cicero, and the philosophers Philodemus and Sextus Empiricus.

Materialism is a form of philosophical monism which holds that matter is the fundamental substance in nature, and that all things, including mental states and consciousness, are results of material interactions. According to philosophical materialism, mind and consciousness are by-products or epiphenomena of material processes without which they cannot exist. This concept directly contrasts with idealism, where mind and consciousness are first-order realities to which matter is subject and material interactions are secondary.

Ontology study of the nature of being, becoming, existence or reality, as well as the basic categories of being and their relations

Ontology is the philosophical study of being. More broadly, it studies concepts that directly relate to being, in particular becoming, existence, reality, as well as the basic categories of being and their relations. Traditionally listed as a part of the major branch of philosophy known as metaphysics, ontology often deals with questions concerning what entities exist or may be said to exist and how such entities may be grouped, related within a hierarchy, and subdivided according to similarities and differences.

Epicureanism philosophical movement developed by Epicurus

Epicureanism is a system of philosophy based upon the teachings of the ancient Greek philosopher Epicurus, founded around 307 BC. Epicurus was an atomic materialist, following in the steps of Democritus. His materialism led him to a general attack on superstition and divine intervention. Following Aristippus—about whom very little is known—Epicurus believed that what he called "pleasure" (ἡδονή) was the greatest good, but that the way to attain such pleasure was to live modestly, to gain knowledge of the workings of the world, and to limit one's desires. This would lead one to attain a state of tranquility (ataraxia) and freedom from fear as well as an absence of bodily pain (aponia). The combination of these two states constitutes happiness in its highest form. Although Epicureanism is a form of hedonism insofar as it declares pleasure to be its sole intrinsic goal, the concept that the absence of pain and fear constitutes the greatest pleasure, and its advocacy of a simple life, make it very different from "hedonism" as colloquially understood.

"Nothing", used as a pronoun subject, denotes the absence of a something or particular thing that one might expect or desire to be present or the inactivity of a thing or things that are usually or could be active. As a predicate or complement "nothing" denotes the absence of meaning, value, worth, relevance, standing, or significance. "Nothingness" is a philosophical term that denotes the general state of nonexistence, sometimes reified as a domain or dimension into which things pass when they cease to exist or out of which they may come to exist, e.g., God is understood to have created the universe ex nihilo, "out of nothing."

Vaisheshika or Vaiśeṣika is one of the six orthodox schools of Hindu philosophy from ancient India. In its early stages, the Vaiśeṣika was an independent philosophy with its own metaphysics, epistemology, logic, ethics, and soteriology. Over time, the Vaiśeṣika system became similar in its philosophical procedures, ethical conclusions and soteriology to the Nyāya school of Hinduism, but retained its difference in epistemology and metaphysics.

Kanada, also known as Kashyapa, Uluka, Kananda and Kanabhuk, was an ancient Indian natural scientist and philosopher who founded the Vaisheshika school of Indian philosophy that also represents the earliest Indian physics.

In optics, the corpuscular theory of light, arguably set forward by Descartes (1637) states that light is made up of small discrete particles called "corpuscles" which travel in a straight line with a finite velocity and possess impetus. This was based on an alternate description of atomism of the time period. This theory cannot explain refraction, diffraction and interference.

Corpuscularianism is a physical theory that supposes all matter to be composed of minute particles. The theory became important in the seventeenth century; amongst the leading corpuscularians were Thomas Hobbes, René Descartes, Pierre Gassendi, Robert Boyle, Isaac Newton, and John Locke.

Matter is the substrate from which physical existence is derived, remaining more or less constant amid changes. The word "matter" is derived from the Latin word māteria, meaning "wood", or “timber”, in the sense "material", as distinct from "mind" or "form". The image of wood came to Latin as a calque from the Greek philosophical usage of hyle (ὕλη).

Metrodorus of Chios was a Greek philosopher, belonging to the school of Democritus, and an important forerunner of Epicurus.

Matter substance that has rest mass and volume, or several other definitions

In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, "matter" generally includes atoms and anything made up of them, and any particles that act as if they have both rest mass and volume. However it does not include massless particles such as photons, or other energy phenomena or waves such as light or sound. Matter exists in various states. These include classical everyday phases such as solid, liquid, and gas – for example water exists as ice, liquid water, and gaseous steam – but other states are possible, including plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.

Sébastien Basson, Latinized as Sebastianus Basso, was a French physician and natural philosopher of the beginning of the seventeenth century. He was an early theorist of a matter theory based on both atoms and compounds. His natural philosophy draws on several currents of thought, including Italian Renaissance naturalism, alchemy and Calvinist theology. Basson was an atomist, who, independently from Isaac Beeckman, formed the concept of "molecule".

In physics, horror vacui, or plenism, commonly stated as "nature abhors a vacuum", is a postulate attributed to Aristotle, who articulated a belief, later criticized by the atomism of Epicurus and Lucretius, that nature contains no vacuums because the denser surrounding material continuum would immediately fill the rarity of an incipient void. He also argued against the void in a more abstract sense, for example, that by definition a void, itself, is nothing, and following Plato, nothing cannot rightly be said to exist. Furthermore, insofar as it would be featureless, it could neither be encountered by the senses, nor could its supposition lend additional explanatory power. Hero of Alexandria challenged the theory in the first century CE, but his attempts to create an artificial vacuum failed. The theory was debated in the context of 17th-century fluid mechanics, by Thomas Hobbes and Robert Boyle, among others, and through the early 18th century by Sir Isaac Newton and Gottfried Leibniz.

Free will in antiquity was not discussed in the same terms as used in the modern free will debates, but historians of the problem have speculated who exactly was first to take positions as determinist, libertarian, and compatibilist in antiquity. There is wide agreement that these views were essentially fully formed over 2000 years ago. Candidates for the first thinkers to form these views, as well as the idea of a non-physical "agent-causal" libertarianism, include Democritus (460–370), Aristotle (384–322), Epicurus (341–270), Chrysippus (280–207), and Carneades (214–129).

Minima naturalia were theorized by Aristotle as the smallest parts into which a homogeneous natural substance could be divided and still retain its essential character. In this context, "nature" means formal nature. Thus, "natural minimum" may be taken to mean "formal minimum": the minimum amount of matter necessary to instantiate a certain form.

Philosophy of motion is a branch of philosophy concerned with exploring questions on the existence and nature of motion. The central questions of this study concern the epistemology and ontology of motion, whether motion exists as we perceive it, what is it, and, if it exists, how does it occur. The philosophy of motion is important in the study of theories of change in natural systems and is closely connected to studies of space and time in philosophy.

References