This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations .(March 2013) (Learn how and when to remove this template message) |

The **Black model** (sometimes known as the **Black-76 model**) is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.

Black's model can be generalized into a class of models known as log-normal forward models, also referred to as LIBOR market model.

The Black formula is similar to the Black–Scholes formula for valuing stock options except that the spot price of the underlying is replaced by a discounted futures price F.

Suppose there is constant risk-free interest rate *r* and the futures price *F(t)* of a particular underlying is log-normal with constant volatility *σ*. Then the Black formula states the price for a European call option of maturity *T* on a futures contract with strike price *K* and delivery date *T'* (with ) is

The corresponding put price is

where

and N(.) is the cumulative normal distribution function.

Note that *T' * doesn't appear in the formulae even though it could be greater than *T*. This is because futures contracts are marked to market and so the payoff is realized when the option is exercised. If we consider an option on a forward contract expiring at time *T' > T*, the payoff doesn't occur until *T' *. Thus the discount factor is replaced by since one must take into account the time value of money. The difference in the two cases is clear from the derivation below.

The Black formula is easily derived from the use of Margrabe's formula, which in turn is a simple, but clever, application of the Black–Scholes formula.

The payoff of the call option on the futures contract is *max (0, F(T) - K)*. We can consider this an exchange (Margrabe) option by considering the first asset to be and the second asset to be the riskless bond paying off $1 at time *T*. Then the call option is exercised at time *T* when the first asset is worth more than *K* riskless bonds. The assumptions of Margrabe's formula are satisfied with these assets.

The only remaining thing to check is that the first asset is indeed an asset. This can be seen by considering a portfolio formed at time 0 by going long a *forward* contract with delivery date *T* and short *F(0)* riskless bonds (note that under the deterministic interest rate, the forward and futures prices are equal so there is no ambiguity here). Then at any time *t* you can unwind your obligation for the forward contract by shorting another forward with the same delivery date to get the difference in forward prices, but discounted to present value: . Liquidating the *F(0)* riskless bonds, each of which is worth , results in a net payoff of .

The **Black–Scholes** or **Black–Scholes–Merton model** is a mathematical model for the dynamics of a financial market containing derivative investment instruments. From the partial differential equation in the model, known as the Black–Scholes equation, one can deduce the **Black–Scholes formula**, which gives a theoretical estimate of the price of European-style options and shows that the option has a *unique* price regardless of the risk of the security and its expected return. The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other options markets around the world. It is widely used, although often with some adjustments, by options market participants.

A **geometric Brownian motion (GBM)** is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.

In financial mathematics, **put–call parity** defines a relationship between the price of a European call option and European put option, both with the identical strike price and expiry, namely that a portfolio of a long call option and a short put option is equivalent to a single forward contract at this strike price and expiry. This is because if the price at expiry is above the strike price, the call will be exercised, while if it is below, the put will be exercised, and thus in either case one unit of the asset will be purchased for the strike price, exactly as in a forward contract.

In finance, the **binomial options pricing model** (**BOPM**) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

In mathematical finance, the **Greeks** are the quantities representing the sensitivity of the price of derivatives such as options to a change in underlying parameters on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the most common of these sensitivities are denoted by Greek letters. Collectively these have also been called the **risk sensitivities**, **risk measures** or **hedge parameters**.

In finance, **moneyness** is the relative position of the current price of an underlying asset with respect to the strike price of a derivative, most commonly a call option or a put option. Moneyness is firstly a three-fold classification: if the derivative would have positive intrinsic value if it were to expire today, it is said to be **in the money**; if it would be worthless if expiring with the underlying at its current price it is said to be **out of the money**, and if the current underlying price and strike price are equal, it is said to be **at the money**. There are two slightly different definitions, according to whether one uses the current price (spot) or future price (forward), specified as "at the money spot" or "at the money forward", etc.

An **Asian option** is a special type of option contract. For Asian options the payoff is determined by the average underlying price over some pre-set period of time. This is different from the case of the usual European option and American option, where the payoff of the option contract depends on the price of the underlying instrument at exercise; Asian options are thus one of the basic forms of exotic options. There are two types of Asian options: fixed strike, where averaging price is used in place of underlying price; and fixed price, where averaging price is used in place of strike.

**Lookback options**, in the terminology of finance, are a type of exotic option with path dependency, among many other kind of options. The payoff depends on the optimal underlying asset's price occurring over the life of the option. The option allows the holder to "look back" over time to determine the payoff. There exist two kinds of lookback options: with floating strike and with fixed strike.

A **binary option** is a financial exotic option in which the payoff is either some fixed monetary amount or nothing at all. The two main types of binary options are the cash-or-nothing binary option and the asset-or-nothing binary option. The former pays some fixed amount of cash if the option expires in-the-money while the latter pays the value of the underlying security. They are also called **all-or-nothing options**, **digital options**, and **fixed return options** (**FROs**).

**Rational pricing** is the assumption in financial economics that asset prices will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.

In financial mathematics, the **Hull–White model** is a model of future interest rates. In its most generic formulation, it belongs to the class of no-arbitrage models that are able to fit today's term structure of interest rates. It is relatively straightforward to translate the mathematical description of the evolution of future interest rates onto a tree or lattice and so interest rate derivatives such as bermudan swaptions can be valued in the model.

In finance, a **foreign exchange option** is a derivative financial instrument that gives the right but not the obligation to exchange money denominated in one currency into another currency at a pre-agreed exchange rate on a specified date. See Foreign exchange derivative.

A **variance swap** is an over-the-counter financial derivative that allows one to speculate on or hedge risks associated with the magnitude of movement, i.e. volatility, of some underlying product, like an exchange rate, interest rate, or stock index.

In mathematical finance, the **Black–Derman–Toy model** (**BDT**) is a popular short rate model used in the pricing of bond options, swaptions and other interest rate derivatives; see Lattice model (finance)#Interest rate derivatives. It is a one-factor model; that is, a single stochastic factor—the short rate—determines the future evolution of all interest rates. It was the first model to combine the mean-reverting behaviour of the short rate with the lognormal distribution, and is still widely used.

In finance, an **option** is a contract which gives the buyer the right, but not the obligation, to buy or sell an underlying asset or instrument at a specified strike price prior to or on a specified date, depending on the form of the option. The strike price may be set by reference to the spot price of the underlying security or commodity on the day an option is taken out, or it may be fixed at a discount or at a premium. The seller has the corresponding obligation to fulfill the transaction – to sell or buy – if the buyer (owner) "exercises" the option. An option that conveys to the owner the right to buy at a specific price is referred to as a call; an option that conveys the right of the owner to sell at a specific price is referred to as a put.

In mathematical finance, the **Black–Scholes equation** is a partial differential equation (PDE) governing the price evolution of a European call or European put under the Black–Scholes model. Broadly speaking, the term may refer to a similar PDE that can be derived for a variety of options, or more generally, derivatives.

A **Low Exercise Price Option** (**LEPO**) is an Australian Stock Exchange traded option with a low exercise price that was specifically designed to be traded on margin. It is a European style call option with a low exercise price of $0.01 and a contract size of 100 shares to be delivered on exercise.

In mathematical finance, **Margrabe's formula** is an option pricing formula applicable to an option to exchange one risky asset for another risky asset at maturity. It was derived by William Margrabe in 1978. Margrabe's paper has been cited by over 2000 subsequent articles.

The **Datar–Mathews Method** is a method for real options valuation. The method provides an easy way to determine the real option value of a project simply by using the average of positive outcomes for the project. The method can be understood as an extension of the net present value (NPV) multi-scenario Monte Carlo model with an adjustment for risk aversion and economic decision-making. The method uses information that arises naturally in a standard discounted cash flow (DCF), or NPV, project financial valuation. It was created in 2000 by Vinay Datar, professor at Seattle University; and Scott H. Mathews, Technical Fellow at The Boeing Company.

In finance, **Black's approximation** is an approximate method for computing the value of an American call option on a stock paying a single dividend. It was described by Fischer Black in 1975.

- Black, Fischer (1976). The pricing of commodity contracts, Journal of Financial Economics, 3, 167-179.
- Garman, Mark B. and Steven W. Kohlhagen (1983). Foreign currency option values, Journal of International Money and Finance, 2, 231-237.
- Miltersen, K., Sandmann, K. et Sondermann, D., (1997): "Closed Form Solutions for Term Structure Derivates with Log-Normal Interest Rates", Journal of Finance, 52(1), 409-430.

**Discussion**

- Bond Options, Caps and the Black Model Dr. Milica Cudina, University of Texas at Austin

**Online tools**

- Caplet And Floorlet Calculator Dr. Shing Hing Man, Thomson-Reuters' Risk Management

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.