Booting process of Windows NT

Last updated

The booting process of Windows NT is the process run to start Windows NT. The process has been changed between releases, with the biggest changes being made with Windows Vista. In versions before Vista, the booting process begins when the BIOS loads the Windows NT bootloader, NTLDR. Starting with Vista, the booting process begins with either the BIOS or UEFI loading the Windows Boot Manager, which replaces NTLDR as the bootloader. Next, the bootloader starts the kernel, which starts the session manager, which begins the login process. Once the user is logged in, File Explorer, the graphical user interface used by Windows NT, is started.

Contents

History

Windows Vista introduces a complete overhaul of the Windows operating system loader architecture. [1] [2] The earliest known reference to this revised architecture is included within PowerPoint slides distributed by Microsoft during the Windows Hardware Engineering Conference of 2004, when the operating system was codenamed as "Longhorn". This documentation mentions that the Windows operating system loader would be undergoing a significant restructuring in order to support EFI and to "do some major overhaul of legacy code". [3] The new boot architecture completely replaces the NTLDR architecture used in previous versions of Windows NT. [2]

Most of the steps that follow the NT kernel being loaded, including kernel initialization and user-space initialization, are kept the same as in earlier NT systems. [4] Refactoring in Winlogon resulted in GINA being completely replaced by Credential Providers and graphical components in Windows Vista and later. [5]

BIOS/UEFI

On systems with a BIOS, the BIOS invokes MBR boot code from a hard disk drive at startup. The MBR boot code and the VBR boot code are OS-specific. In Microsoft Windows, the MBR boot code tries to find an active partition (the MBR is only 512 bytes), then executes the VBR boot code of an active partition. The VBR boot code tries to find and execute NTLDR for Windows XP, Windows Server 2003 and earlier, or the Windows Boot Manager for Windows Vista and later, from an active partition. [6]

On systems with a UEFI, the UEFI invokes bootmgfw.efi from an EFI system partition at startup, starting the Windows Boot Manager.

Boot loader phase

The Windows NT startup process starts when the computer finds a Windows boot loader, a portion of the Windows operating system responsible for finding Microsoft Windows and starting it up. Prior to Windows Vista, the boot loader was NTLDR. Microsoft has also released operating systems for Intel Itanium processors which use IA-64 architecture. The boot loader of these editions of Windows is IA64ldr.efi (later referred as simply IA64ldr). It is an Extensible Firmware Interface (EFI) program. [7] Windows Vista and later use the Windows Boot Manager (bootmgr).

Operating system selection

Windows Boot Manager (BOOTMGR) with Windows 7 highlighted and options to load Windows Vista through BOOTMGR and XP through NTLDR. Windows Boot Manager with Windows 7,Vista and XP.png
Windows Boot Manager (BOOTMGR) with Windows 7 highlighted and options to load Windows Vista through BOOTMGR and XP through NTLDR.

The boot loader, once executed, searches for Windows operating systems. Windows Boot Manager does so by reading Boot Configuration Data (BCD), a complex firmware-independent database for boot-time configuration data. Its predecessor, NTLDR, does so by reading the simpler boot.ini . If the boot.ini file is missing, the boot loader will attempt to locate information from the standard installation directory. For Windows NT and 2000 machines, it will attempt to boot from C:\WINNT. For machines running Windows XP, 2003, and later, it will boot from C:\WINDOWS.

Both databases may contain a list of installed Microsoft operating systems that may be loaded from the local hard disk drive or a remote computer on the local network. NTLDR supports operating systems installed on disks whose file system is NTFS or FAT file systems, CDFS (ISO 9660) or UDFS. [8] Windows Boot Manager also supports operating systems installed inside a VHD file, stored on an NTFS disk drive. [9]

In Windows 2000 or in later versions of Windows in which hibernation is supported, the Windows boot loader starts the search for operating systems by searching for hiberfil.sys. NTLDR looks into the root folder of the default volume specified in boot.ini. Windows Boot Manager looks up the location of hiberfil.sys in BCD. If this file is found and an active memory set is found in it, the boot loader loads the contents of the file (which is a compressed version of a physical memory dump of the machine) into memory and restores the computer to the state that it was in prior to hibernation by running winresume.exe.

Next, the boot loader looks for a list of installed operating system entries. If more than one operating system is installed, the boot loader shows a boot menu and allow the user to select an operating system. If a non NT-based operating system such as Windows 98 is selected (specified by an MS-DOS style of path, e.g. C:\), then the boot loader loads the associated "boot sector" file listed in boot.ini or BCD (by default, this is bootsect.dos if no file name is specified) and passes execution control to it.

Otherwise, the boot process continues. For Windows Vista and after, this is done through a separate program, winload.exe.

Loading the Windows NT kernel

The operating system starts when certain basic drivers flagged as "Boot" are loaded into memory. The appropriate file system driver for the partition type (NTFS, FAT, or FAT32) which the Windows installation resides in is amongst them. At this point in the boot process, the boot loader clears the screen and displays a textual progress bar (which is often not seen due to the initialization speed); Windows 2000 also displays the text "Starting Windows..." underneath.

NTLDR Bootloader's Advanced Option Menu. Windows Advanced Options menu.png
NTLDR Bootloader's Advanced Option Menu.

If the user presses F8 during this phase, the advanced options menu is displayed, containing various special boot modes including Safe mode, with the Last Known Good Configuration, with debugging enabled, and (in the case of Server editions) Directory Services Restore Mode. Starting with Windows Vista, this menu was changed significantly. Once a boot mode has been selected (or if F8 was never pressed) booting continues.

Hardware information about the computer is gathered by NTDETECT.COM in Windows XP and earlier or by winload.exe in later versions. This information is stored in the HKLM\HARDWARE\DESCRIPTION key in the Windows Registry.

Next the Windows NT kernel ( Ntoskrnl.exe ), the Hardware Abstraction Layer ( hal.dll ), kdcom.dll (Kernel Debugger HW Extension DLL), bootvid.dll (the Windows logo and side-scrolling bar), and config\system (one of the registry hives) are loaded.

For Windows XP and earlier, if multiple hardware configurations are defined in the Registry, the user is prompted at this point to choose one.

With the kernel in memory, boot-time device drivers are loaded (but not yet initialized). The required information (along with information on all detected hardware and Windows Services) is stored in the HKEY_LOCAL_MACHINE\SYSTEM portion of the registry, in a set of registry keys collectively called a Control Set. In Windows XP and earlier, multiple control sets are kept, in the event that the settings contained in the currently-used one prohibit the system from booting. HKEY_LOCAL_MACHINE\SYSTEM contains control sets labeled ControlSet001, ControlSet002, etc. Windows uses CurrentControlSet to read and write information, but the key is merely a synthesized link to one of the sets defined by HKLM\System\Select\Control; it does not exist in the Hive file. [10]

Windows now picks the "real" control set being used based on the values set in the HKEY_LOCAL_MACHINE\SYSTEM\Select registry key:

When a control set is chosen, the Current key gets set accordingly. The Failed key is also set to the same as Current until the end of the boot process. LastKnownGood is also set to Current if the boot process completes successfully.

Which services are started and the order which each group is started in are provided by the following keys:

For the purposes of booting, a driver may be one of the following:

With this finished, control is then passed from the boot loader to the kernel.

Kernel phase

The initialization of the kernel subsystem and the Windows Executive subsystems is done in two phases.

During the first phase, basic internal memory structures are created, and each CPU's interrupt controller is initialized. The memory manager is initialized, creating areas for the file system cache, paged and nonpaged pools of memory. The Object Manager is initialized, [11] and creates the initial security token for assignment to the first process on the system, and the Process Manager itself. The System idle process as well as the System process are created at this point.

The second phase involves initializing the device drivers which were identified by NTLDR as being system drivers.

Through the process of loading device drivers, a "progress bar" is visible at the bottom of the display on Windows 2000 systems; in Windows XP and Windows Server 2003, this was replaced by an animated bar which does not represent actual progress. Prior to Windows XP, this part of the boot process took significantly longer; this is because the drivers would be initialized one at a time. On Windows XP and Server 2003, the drivers are all initialized asynchronously.

Session manager

Once all the Boot and System drivers have been loaded, the kernel (system thread) starts the Session Manager Subsystem (smss.exe). The Session Manager stores its configuration at HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. The exact operation of most of these items is based on the configuration set in the registry. [12]

The Session Manager creates the environment variables located at the registry entry HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment. It also creates additional paging files with configuration data from HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management. [13]

The Session Manager Subsystem is then responsible starting the Win32 subsystem. It starts the kernel-mode side of the subsystem implemented by win32k.sys. [13] Once this is done, Windows is able to switch into graphical mode as there is now enough infrastructure in place. The user-mode side of the subsystem, Client/Server Runtime Subsystem (csrss.exe), is also started. [13] This makes the Win32 subsystem available to user-mode applications.

The Session Manager Subsystem is also responsible for doing any operations that are requested to be done at the start of a session. Commands listed in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\BootExecute, such as autochk and convert, are executed. These commands are run before services are loaded by later steps of the booting process. [13] Any rename operations queued at HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\PendingFileRenameOperations. This is used to allow previously in-use files (e.g. drivers) to be replaced as part of a reboot. [14]

autochk running on Windows 10. Autochk Windows 10.png
autochk running on Windows 10.

autochk mounts all drives and checks them one at a time to see whether or not they were cleanly unmounted. If autochk determines one or more volumes are dirty, it will automatically run chkdsk and provides the user with a short window to abort the repair process by pressing a key within 10 seconds (introduced in Windows NT 4.0 Service Pack 4; earlier versions would not allow the user to abort chkdsk). Since Windows 2000, XP and 2003 show no text screen at that point (unlike NT 3.1 to 4.0, which displayed a blue text screen), the user will see a different background picture holding a mini-text-screen in the center of the screen and show the progress of chkdsk there. [15]

Starting with Windows Vista, the Session Manager Subsystem creates a temporary instance of itself that launches the Windows Startup Application (wininit.exe) and a second Client/Server Runtime Subsystem (csrss.exe) for Session 0, a session decided to system processes. From here, the Windows Startup Application starts the Service Control Manager (services.exe), which starts all the Windows services that are set to "Auto-Start" and sets the LastKnownGood to the current control set. [14] The application also starts the Local Security Authority Subsystem Service (lsass.exe). Before Windows Vista, these processes were started by Windows Logon instead of the Windows Startup Application, which didn't exist. The dedicated session for system processes also didn't exist. [16]

The Session Manager Subsystem now starts Winlogon (Windows Logon Application), which is responsible for handling interactive logons to a Windows system, either local or remote. [16]

Authentication

The authentication process is implemented by Winlogon. This program is responsible for responding to the secure attention sequence (SAS), loading the user profile on logon, and optionally locking the computer when a screensaver is running.

Windows 11 lock screen, requiring user to press Control-Alt-Delete. Windows 11 pre-login.png
Windows 11 lock screen, requiring user to press Control-Alt-Delete.

Winlogon checks if automatic logon is enabled, and if so, logs in to the specified account automatically. [17] If there is not automatic logon enabled, Winlogon starts the process to allow the user to logon. Before Windows Vista this was done by GINA, [18] but starting with Vista this is done by LogonUI. If configured, both of these programs display a prompt for the user to enter the Secure Attention Sequence (SAS) (Control-Alt-Delete). They then display the login dialog which prompts the user to enter their credentials. Once the user submits these credentials, they are passed to LSASS and any other additional network credential providers. This allows multiple network providers to authenticate the user at once during normal logon. [19] [18]

LSASS first tries to use cached data in the LSA database, the SECURITY hive of the registry. If there is none, LSASS determines which account protocol is to be used by using the security packages listed in the key HKLM\SYSTEM\CurrentControlSet\Control\Lsa. There are two standard packages, msv1_0.dll, which implements the NTLM protocols, and Kerberos.dll, which provides remote login by using Active Directory. msv1_0.dll is used in stand-alone systems and domain-member systems for backward compatibility. If the user is trying to log into the local host then msv1_0.dll uses the Security Account Manager database located at HKLM/SAM. If the user is trying to log into another host then the NetLogon service is used to carry the data with the following sequence:

msv1_0.dll <-> netlogon <-> remote netlogon <-> remote msv1_0.dll <-> remote SAM 

After the user is authenticated, LSASS enforces the local security policy (checking user permissions, creating audit trails, doling out security tokens, etc.) and passes control pack to Winlogon. Winlogon creates and opens an interactive windows station, WinSta0, [20] and creates three desktops, Winlogon, Default and ScreenSaver. Winlogon switches from the Winlogon desktop to the Default desktop when the shell indicates that it is ready to display something for the user, or after thirty seconds, whichever comes first. The system switches back to the Winlogon desktop if the user presses Control-Alt-Delete or when a User Account Control prompt is shown. [21] Winlogon now starts the program specified in the Userinit value which defaults to userinit.exe. This value supports multiple executables. [19]

Shell

Userinit is the first program that runs with the user credentials. It is responsible to start all the other programs that compose the user shell environment.

The shell program (typically Explorer.exe) is started from the registry entry Shell= pointed to by the same registry entry in key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\IniFileMapping\system.ini\Boot; its default value is SYS:Microsoft\Windows NT\CurrentVersion\Winlogon, which evaluates to HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon. [22]

Userinit starts by loading the user profile. There are a few types of user profiles and it can be local or remote. This process can be very slow if the user profile is of the "roaming" type. User and Computer Group Policy settings are then applied and user scripts, machine scripts, and proquota.exe are run. Startup programs are started and then the shell configured in registry, which defaults to explorer.exe. Now Userinit exits and the shell program continues running without a parent process.

Userinit runs startup programs from the following locations: [13]

Advanced options

With the advent of the new boot manager in Windows Vista, many components have been changed; one is the Advanced Boot Options menu that provides options for advanced boot modes (e.g., Safe Mode). Due to the implementation of fast startup in Windows 8 and up, access to the Advanced Boot Options menu has been disabled by default. However, access is still possible with a BCD modification. These are the possible boot modes:

The ABO menu is accessible by rapidly pressing or holding the F8 key before Windows boots. Starting from Windows 8 on UEFI, it can only be accessed by clicking Restart while holding the Shift key.

Remote booting and installation

To successfully boot, the client must support PXE booting and the Windows Deployment Services (WDS) component must be installed on the server. It is not installed by default. WDS is the successor of Remote Installation Services (RIS).

The PXE program is found on the BIOS or on a ROM chip on the network card.

PXE booting is not a technology specific to Windows and can also be used to start a Linux system. In fact, a Linux system can act as a server to service DHCP or TFTP.

PXE can be used to start Windows Setup to install the system on the client computer or to run the operating system from RAM. The latter, called Remote Boot, was introduced by Windows XP Embedded SP1 [24] and is only available for this flavor of Windows. [25]

The general process for both methods is as follows:

The Boot Information Negotiation Layer (BINL) is a Windows 2000 service running on the server that communicates with the client after the NBP was already loaded by the PXE.

See also

Related Research Articles

NTLDR is the boot loader for all releases of Windows NT operating system from 1993 with the release of Windows NT 3.1 up until Windows XP and Windows Server 2003. From Windows Vista onwards it was replaced by the BOOTMGR bootloader. NTLDR is typically run from the primary storage device, but it can also run from portable storage devices such as a CD-ROM, USB flash drive, or floppy disk. NTLDR can also load a non NT-based operating system given the appropriate boot sector in a file.

<span class="mw-page-title-main">Windows 9x</span> Series of Microsoft Windows computer operating systems

Windows 9x is a generic term referring to a series of Microsoft Windows computer operating systems produced from 1995 to 2000, which were based on the Windows 95 kernel and its underlying foundation of MS-DOS, both of which were updated in subsequent versions. The first version in the 9x series was Windows 95, which was succeeded by Windows 98 and then Windows Me, which was the third and last version of Windows on the 9x line, until the series was superseded by Windows XP.

<span class="mw-page-title-main">Windows Registry</span> Database for Microsoft Windows

The Windows Registry is a hierarchical database that stores low-level settings for the Microsoft Windows operating system and for applications that opt to use the registry. The kernel, device drivers, services, Security Accounts Manager, and user interfaces can all use the registry. The registry also allows access to counters for profiling system performance.

<span class="mw-page-title-main">Architecture of Windows NT</span> Overview of the architecture of the Microsoft Windows NT line of operating systems

The architecture of Windows NT, a line of operating systems produced and sold by Microsoft, is a layered design that consists of two main components, user mode and kernel mode. It is a preemptive, reentrant multitasking operating system, which has been designed to work with uniprocessor and symmetrical multiprocessor (SMP)-based computers. To process input/output (I/O) requests, it uses packet-driven I/O, which utilizes I/O request packets (IRPs) and asynchronous I/O. Starting with Windows XP, Microsoft began making 64-bit versions of Windows available; before this, there were only 32-bit versions of these operating systems.

The graphical identification and authentication (GINA) is a component of Windows NT 3.51, Windows NT 4.0, Windows 2000, Windows XP and Windows Server 2003 that provides secure authentication and interactive logon services. GINA is a replaceable dynamically linked library that is loaded early in the boot process in the context of Winlogon when the machine is started. It is responsible for handling the secure attention sequence, typically Control-Alt-Delete, and interacting with the user when this sequence is received. GINA is also responsible for starting initial processes for a user (such as the Windows Shell) when they first log on. GINA is discontinued in Windows Vista.

<span class="mw-page-title-main">Winlogon</span> Component of Microsoft Windows operating systems

Winlogon is the component of Microsoft Windows operating systems that is responsible for handling the secure attention sequence, loading the user profile on logon, creates the desktops for the window station, and optionally locking the computer when a screensaver is running. In Windows Vista and later operating systems, the roles and responsibilities of Winlogon have changed significantly.

In computing, SUBST is a command on the DOS, IBM OS/2, Microsoft Windows and ReactOS operating systems used for substituting paths on physical and logical drives as virtual drives.

ntdetect.com is a component of Microsoft Windows NT-based operating systems that operate on the x86 architecture. It is used during the Windows NT startup process, and is responsible for detecting basic hardware that will be required to start the operating system.

The Native API is a lightweight application programming interface (API) used by Windows NT and user mode applications. This API is used in the early stages of Windows NT startup process, when other components and APIs are still unavailable. Therefore, a few Windows components, such as the Client/Server Runtime Subsystem (CSRSS), are implemented using the Native API. The Native API is also used by subroutines such as those in kernel32.dll that implement the Windows API, the API based on which most of the Windows components are created.

ntoskrnl.exe, also known as the kernel image, contains the kernel and executive layers of the Microsoft Windows NT kernel, and is responsible for hardware abstraction, process handling, and memory management. In addition to the kernel and executive mentioned earlier, it contains the cache manager, security reference monitor, memory manager, scheduler (Dispatcher), and blue screen of death.

The Session Manager Subsystem, or smss.exe, is a component of the Microsoft Windows NT family of operating systems, starting in Windows NT 3.1. It is executed during the startup process of those operating systems.

The Microsoft Windows operating system supports a form of shared libraries known as "dynamic-link libraries", which are code libraries that can be used by multiple processes while only one copy is loaded into memory. This article provides an overview of the core libraries that are included with every modern Windows installation, on top of which most Windows applications are built.

<span class="mw-page-title-main">Windows Boot Manager</span> Boot process used in modern Windows NT-based products

The Windows Boot Manager (BOOTMGR) is the bootloader provided by Microsoft for Windows NT versions starting with Windows Vista. It is the first program launched by the BIOS or UEFI of the computer and is responsible for loading the rest of Windows. It replaced the NTLDR present in older versions of Windows.

The Client/Server Runtime Subsystem, or csrss.exe, is a component of the Windows NT family of operating systems that provides the user mode side of the Win32 subsystem. In modern versions of Windows, it is primarily involved with process and thread management, console window handling, side-by-side assembly loading and the shutdown process. Historically, it had also been responsible for window management and graphics rendering, however, these operations have been moved to kernel mode starting with Windows NT 4.0 to improve performance.

There are a number of security and safety features new to Windows Vista, most of which are not available in any prior Microsoft Windows operating system release.

The booting process of Microsoft Windows varies between different releases.

Windows Vista has many significant new features compared with previous Microsoft Windows versions, covering most aspects of the operating system.

Windows NT is a proprietary graphical operating system produced by Microsoft as part of its Windows product line, the first version of which was released on July 27, 1993, and it lives on today since the latest version of Windows, 11, includes its technology.

<span class="mw-page-title-main">Architecture of Windows 9x</span>

The Windows 9x series of operating systems refers to the monolithic kernel which powers these operating systems. The basic code is similar in function to MS-DOS. As a 16-/32-bit hybrid, it requires support from MS-DOS to operate.

Service Control Manager (SCM) is a special system process under the Windows NT family of operating systems, which starts, stops and interacts with Windows service processes. It is located in the %SystemRoot%\System32\services.exe executable. Service processes interact with SCM through a well-defined API, and the same API is used internally by the interactive Windows service management tools such as the MMC snap-in Services.msc and the command-line Service Control utility sc.exe. Terminating this file is used as a method of causing the Blue Screen of Death.

References

  1. "Inside the Windows Vista Kernel – Startup Processes". Microsoft. Retrieved October 1, 2010.
  2. 1 2 Microsoft (February 4, 2008). "Boot Configuration Data in Windows Vista" (DOCX). Retrieved April 18, 2015.
  3. Ritz, Andrew (2004). "EFI and Windows 'Longhorn'". Microsoft. Archived from the original (PPT) on June 9, 2004. Retrieved April 18, 2015.
  4. de Boyne Pollard, Jonathan. "The Windows NT 6 boot process". Frequently Given Answers.
  5. "Winlogon and GINA". MSDN . Microsoft . Retrieved December 4, 2014.
  6. "Boot Sequence of Windows Multi-Boot - Multibooters.com". www.multibooters.com. Retrieved November 19, 2020.
  7. "In Windows Server 2003, you may not be able to start a computer from a GPT disk when the computer has an Itanium processor (Revision: 2.2)". Microsoft Support. Microsoft Corporation. Retrieved October 29, 2011.
  8. "Unified Extended Firmware Interface support in Windows Vista (Revision: 1.5)". Microsoft Support. Microsoft Corporation. October 26, 2007. Retrieved October 30, 2011.
  9. "Boot from VHD in Win7". TechNet Edge . Microsoft Corporation. February 20, 2009. Retrieved October 30, 2011.
  10. "What are Control Sets? What is CurrentControlSet?". Microsoft Support. Archived from the original on February 17, 2015.
  11. "Windows, NT Object Manager". Channel 9 . Microsoft Corporation. June 3, 2005. Retrieved October 24, 2011.
  12. "Registry: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager". renenyffenegger.ch. Retrieved May 13, 2023.
  13. 1 2 3 4 5 "Troubleshooting the Startup Process". Windows XP Resource Kit. Microsoft Technet. November 3, 2005. Retrieved October 24, 2011.
  14. 1 2 Ionescu, Alex; Russinovich, Mark; Solomon, David A. (2012). Windows internals, Part 2 (6th ed.). Redmond, Wash.: Microsoft. pp. 522–527. ISBN   978-0735665873.
  15. "Resource Kit". Microsoft Corporation. Archived from the original on March 11, 2007.
  16. 1 2 Archiveddocs (September 8, 2016). "Windows Administration: Inside the Windows Vista Kernel: Part 2". learn.microsoft.com. Retrieved May 13, 2023.
  17. Deland-Han. "Configure Windows to automate logon - Windows Server". learn.microsoft.com. Retrieved May 13, 2023.
  18. 1 2 Russinvoich, Mark E.; Solomon, David (2005). Microsoft Windows Internals (4th ed.). Redmond, Washington: Microsoft Press. p. 81. ISBN   978-0735619173.
  19. 1 2 Ionescu, Alex; Russinovich, Mark; Solomon, David A. (2012). Windows internals, Part 1 (6th ed.). Redmond, Wash.: Microsoft Press. p. 77. ISBN   978-0735648739.
  20. "Window Stations". MSDN. Microsoft Corporation. Retrieved April 19, 2014.
  21. "Desktops". MSDN. Microsoft Corporation. Retrieved April 19, 2014.
  22. "Different Shells for Different Users". Microsoft Corporation. October 7, 2008. Retrieved March 16, 2014.
  23. QuinnRadich (February 5, 2021). "Early launch antimalware - Win32 apps". docs.microsoft.com. Retrieved December 14, 2021.
  24. "Deploying Windows XP Embedded Remote Boot". MSDN. Microsoft Corporation. Retrieved April 18, 2014.
  25. "Remote Boot Overview". MSDN. Microsoft Corporation. June 29, 2006. Retrieved April 19, 2014.
  26. "Managing Network Boot Programs". TechNet. Microsoft Corporation. Retrieved April 18, 2014.

Further reading

  1. Russinovich, Mark; Solomon, David A. (2005). "Startup and Shutdown". Microsoft Windows Internals (4th ed.). Microsoft Press. pp.  251–273. ISBN   0-7356-1917-4.
  2. Minasi, Mark; Enck, John (June 1998). "Troubleshooting NT Boot Failures". Administrator's Survival Guide: System Management and Security. Windows IT Library. ISBN   1-882419-88-X . Retrieved February 15, 2006.
  3. "Description of PXE Interaction Among PXE Client, DHCP, and RIS Server (Revision 2.4)". Microsoft Support. Microsoft Corporation. February 28, 2007. Retrieved October 24, 2011.
  4. "Definition of the RunOnce Keys in the Registry (revision 2.3)". Microsoft Support. Microsoft Corporation. January 19, 2007. Retrieved October 24, 2011.
  5. "Available switch options for the Windows XP and the Windows Server 2003 Boot.ini files (revision 6.3)". Microsoft Support. Microsoft Corporation. November 28, 2007. Retrieved October 24, 2011.