Bouvet Triple Junction

Last updated
Seafloor model around the Bouvet Triple Junction Bouvettriplenarrow3d.svg
Seafloor model around the Bouvet Triple Junction
Bouvet Triple Junction
Approximate surface projection on South Atlantic Ocean of Bouvet Triple Junction where the white lines of the three mid-oceanic ridges intercept. Other nearby associated named fracture zones are also shown in orange. Click to expand map and obtain interactive feature details.'"`UNIQ--ref-00000000-QINU`"'

The Bouvet Triple Junction is a geologic triple junction of three tectonic plates located on the seafloor of the South Atlantic Ocean. It is named after Bouvet Island, which lies 275 kilometers to the east.[ citation needed ] The three plates which meet here are the South American Plate, the African Plate, and the Antarctic Plate. The Bouvet Triple Junction although it appears to be a R-R-R type, that is, the three plate boundaries which meet here as mid-ocean ridges: the Mid-Atlantic Ridge (MAR), the Southwest Indian Ridge (SWIR), and the South American-Antarctic Ridge (SAAR) is actually slightly more complex and in transition. [1]

Contents

Transform valleys

There are two prominent transform valleys in the area: Conrad transform and Bouvet transform. Both transforms are named as fracture zones. [2] Conrad transform is named after USNS Robert D. Conrad (T-AGOR-3). [2] Bouvet Island is the highest point on the southern wall of the Bouvet transform and was formed 2.0–2.5 million years ago. [3]

Development

There has been complex development over time with the first Bouvet triple junction being formed about 119–124 Ma, the second about 93–105 Ma, and the third at 25–30 Ma. [4] Up to 10 million years ago this third junction of te Mid-Atlantic Ridge and the two deep transform valleys of Conrad and Bouvet met in one point. Thus the triple junction was of the ridge-fault-fault (RFF) type. [5] Conrad transform, stretching to the west, connected the end of the Mid-Atlantic Ridge to the South American-Antarctic Ridge. Bouvet transform linked it to the Southwest Indian Ridge on the eastern side, [5] and this is known to be the oldest part of the current triple junction at 8 Ma. [6]

Currently the Conrad transform and Bouvet transform are no longer connected to each other. The Mid-Atlantic Ridge is retreating northward, at a rate of 11 mm/a (0.43 in/year). New spreading sections of the South American-Antarctic Ridge and the Southwest Indian Ridge are growing northward from the eastern end of Conrad transform and the western end of Bouvet transform respectively, striving for the shifting triple point. Thus the Mid-Atlantic Ridge is opening like a zipper. The new spreading sections are somewhat unusual:

Related Research Articles

<span class="mw-page-title-main">Pacific-Antarctic Ridge</span> Tectonic plate boundary in the South Pacific Ocean

The Pacific-Antarctic Ridge is a divergent tectonic plate boundary located on the seafloor of the South Pacific Ocean, separating the Pacific Plate from the Antarctic Plate. It is regarded as the southern section of the East Pacific Rise in some usages, generally south of the Challenger Fracture Zone and stretching to the Macquarie Triple Junction south of New Zealand.

<span class="mw-page-title-main">Triple junction</span> Meeting point of three tectonic plates

A triple junction is the point where the boundaries of three tectonic plates meet. At the triple junction each of the three boundaries will be one of three types – a ridge (R), trench (T) or transform fault (F) – and triple junctions can be described according to the types of plate margin that meet at them. Of the ten possible types of triple junctions only a few are stable through time. The meeting of four or more plates is also theoretically possible but junctions will only exist instantaneously.

<span class="mw-page-title-main">Phoenix Plate</span> Tectonic plate that existed during the early Paleozoic through late Cenozoic time

The Phoenix Plate was a tectonic plate that existed during the early Paleozoic through late Cenozoic time. It formed a triple junction with the Izanagi and Farallon plates in the Panthalassa Ocean as early as 410 million years ago, during which time the Phoenix Plate was subducting under eastern Gondwana.

<span class="mw-page-title-main">Terceira Rift</span> Geological plate boundary

The Terceira Rift is a geological rift located amidst the Azores islands in the Atlantic Ocean. It runs between the Azores Triple Junction to the west and the Azores–Gibraltar Transform Fault to the southeast. It separates the Eurasian Plate to the north from the African Plate to the south. The Terceira Rift is named for Terceira Island through which it passes. It crosses Terceira Island as a prominent ESE-WNW fissure zone.

The Azores–Gibraltar Transform Fault (AGFZ), also called a fault zone and a fracture zone, is a major seismic zone in the Eastern Atlantic Ocean between the Azores and the Strait of Gibraltar. It is the product of the complex interaction between the African, Eurasian, and Iberian plates. The AGFZ produced these large-magnitude earthquakes and, consequently, a number of large tsunamis: 1755 Lisbon, 1761 Lisbon, 1816 North Atlantic, 1941 Gloria Fault earthquake, 1969 Horseshoe and 1975.

<span class="mw-page-title-main">Rodrigues Triple Junction</span> Place where the African Plate, the Indo-Australian Plate, and the Antarctic Plate meet

The Rodrigues Triple Junction (RTJ), also known as the Central Indian [Ocean] Triple Junction (CITJ) is a geologic triple junction in the southern Indian Ocean where three tectonic plates meet: the African Plate, the Indo-Australian Plate, and the Antarctic Plate. The triple junction is named for the island of Rodrigues which lies 1,000 km (620 mi) north-west of it.

<span class="mw-page-title-main">Southwest Indian Ridge</span> A mid-ocean ridge on the bed of the south-west Indian Ocean and south-east Atlantic Ocean

The Southwest Indian Ridge (SWIR) is a mid-ocean ridge located along the floors of the south-west Indian Ocean and south-east Atlantic Ocean. A divergent tectonic plate boundary separating the Somali Plate to the north from the Antarctic Plate to the south, the SWIR is characterised by ultra-slow spreading rates (only exceeding those of the Gakkel Ridge in the Arctic) combined with a fast lengthening of its axis between the two flanking triple junctions, Rodrigues (20°30′S70°00′E) in the Indian Ocean and Bouvet (54°17′S1°5′W) in the Atlantic Ocean.

<span class="mw-page-title-main">Southeast Indian Ridge</span> Mid-ocean ridge in the southern Indian Ocean

The Southeast Indian Ridge (SEIR) is a mid-ocean ridge in the southern Indian Ocean. A divergent tectonic plate boundary stretching almost 6,000 km (3,700 mi) between the Rodrigues Triple Junction in the Indian Ocean and the Macquarie Triple Junction in the Pacific Ocean, the SEIR forms the plate boundary between the Australian and Antarctic plates since the Oligocene (anomaly 13).

<span class="mw-page-title-main">South American–Antarctic Ridge</span> Mid-ocean ridge in the South Atlantic between the South American Plate and the Antarctic Plate

The South American–Antarctic Ridge or simply American-Antarctic Ridge is the tectonic spreading center between the South American Plate and the Antarctic Plate. It runs along the sea-floor from the Bouvet Triple Junction in the South Atlantic Ocean south-westward to a major transform fault boundary east of the South Sandwich Islands. Near the Bouvet Triple Junction the spreading half rate is 9 mm/a (0.35 in/year), which is slow, and the SAAR has the rough topography characteristic of slow-spreading ridges.

<span class="mw-page-title-main">Macquarie Triple Junction</span> Place where the Indo-Australian Plate, Pacific Plate, and Antarctic Plate meet

The Macquarie Triple Junction is a geologically active tectonic boundary located at 61°30′S161°0′E at which the historic Indo-Australian Plate, Pacific Plate, and Antarctic Plate collide and interact. The term Triple Junction is given to particular tectonic boundaries at which three separate tectonic plates meet at a specific, singular location. The Macquarie Triple Junction is located on the seafloor of the southern region of the Pacific Ocean, just south of New Zealand. This tectonic boundary was named in respect to the nearby Macquarie Island, which is located southeast of New Zealand.

<span class="mw-page-title-main">Juan Fernández Plate</span> Very small tectonic plate in the southern Pacific Ocean

The Juan Fernandez Plate is a microplate in the Pacific Ocean. With a surface area of approximately 105 km2, the microplate is located between 32° and 35°S and 109° and 112°W. The plate is located at a triple junction between the Pacific Plate, Antarctic Plate, and Nazca Plate. Approximately 2000 km to the west of South America, it is, on average, 3000 meters deep with its shallowest point coming to approximately 1600 meters, and its deepest point reaching 4400 meters.

This is a list of articles related to plate tectonics and tectonic plates.

The Emerald Fracture Zone is an undersea fracture zone running the distance from the southwest corner of the Campbell Plateau to the northern tip of Iselin Bank. The name was proposed by Dr. Steven C. Cande of the Scripps Institution of Oceanography for the vessel Emerald, which traversed this region in 1821, and was approved by the Advisory Committee for Undersea Features in June 1997. The Emerald Basin to its north west was named from the same source. Some have restricted the name to the southern east west orientated transform fault zone but the north south orientated faults that define the eastern boundary of the Emerald Basin are generally included in the literature.

<span class="mw-page-title-main">Charlie-Gibbs Fracture Zone</span> Oceanic feature on the Mid-Atlantic Ridge

<span class="mw-page-title-main">Geology of the Pacific Ocean</span> Overview about the geology of the Pacific Ocean

The Pacific Ocean evolved in the Mesozoic from the Panthalassic Ocean, which had formed when Rodinia rifted apart around 750 Ma. The first ocean floor which is part of the current Pacific Plate began 160 Ma to the west of the central Pacific and subsequently developed into the largest oceanic plate on Earth.

<span class="mw-page-title-main">Agulhas Basin</span>

The Agulhas Basin is an oceanic basin located south of South Africa where the South Atlantic Ocean and south-western Indian Ocean meet. Part of the African Plate, it is bounded by the Agulhas Ridge to the north and the Southwest Indian Ridge to the south; by the Meteor Rise to the west and the Agulhas Plateau to the east. Numerous bathymetric anomalies hint at the basin's dynamic tectonic history.

<span class="mw-page-title-main">Northeast Georgia Rise</span>

The Northeast Georgia Rise is an oceanic plateau located in the South Atlantic Ocean northeast of South Georgia Island and west of the Falkland Plateau.

<span class="mw-page-title-main">Fifteen-Twenty Fracture Zone</span> Fracture zone on the Mid-Atlantic Ridge

The Fifteen-Twenty or 15°20' Fracture Zone (FTFZ), also known as the Cabo Verde Fracture Zone, is a fracture zone located on the Mid-Atlantic Ridge (MAR) in the central Atlantic Ocean between 14–16°N. It is the current location of the migrating triple junction marking the boundaries between the North American, South American, and Nubian plates. The FTFZ is roughly parallel to the North and South America—Africa spreading direction and has a broad axial valley produced over the last ten million years by the northward-migrating triple junction. Offsetting the MAR by some 175 km, the FTFZ is located on one of the slowest portions of the MAR where the full spreading rate is 25 km/Myr.

<span class="mw-page-title-main">Chile Ridge</span> Submarine oceanic ridge in the Pacific Ocean

The Chile Ridge, also known as the Chile Rise, is a submarine oceanic ridge formed by the divergent plate boundary between the Nazca Plate and the Antarctic Plate. It extends from the triple junction of the Nazca, Pacific, and Antarctic plates to the Southern coast of Chile. The Chile Ridge is easy to recognize on the map, as the ridge is divided into several segmented fracture zones which are perpendicular to the ridge segments, showing an orthogonal shape toward the spreading direction. The total length of the ridge segments is about 550–600 km.

References

  1. Ligi et al. 1999, p. 365.
  2. 1 2 "Marine Gazetteer:Conrad Fracture Zone" . Retrieved 6 November 2023.
  3. Migdisova et al. 2017, p. 1290.
  4. Migdisova et al. 2017, p. 1302.
  5. 1 2 3 4 Mitchell et al. 2000, p. 8279.
  6. 1 2 3 Buikin, Verchovsky & Migdisova 2018, p. 1369.

54°17′30″S1°5′0″W / 54.29167°S 1.08333°W / -54.29167; -1.08333