CCIR System M

Last updated
Television line count by nation; countries that are using System M or J currently or have used them prior to digital switchover, are in green. TV-line-count-world.svg
Television line count by nation; countries that are using System M or J currently or have used them prior to digital switchover, are in green.

CCIR (or FCC) System M, sometimes called 525 line, is the analog broadcast television system used in the United States since July 1, 1941, and also in most of the Americas and Caribbean, South Korea, and Taiwan. Japan uses System J, which is nearly identical to System M. The systems were given their letter designations in the ITU identification scheme adopted in Stockholm in 1961. Both System M and System J display 525 lines of video at 30 frames per second using 6 MHz spacing between channel numbers, and is used for both VHF and UHF channels.

Contents

Currently (as of 2015), Systems M and J are being replaced by digital broadcasting in countries such as the Americas, Japan, South Korea, Taiwan and the Philippines.

Specifications

Radio spectrum of a System M television channel with NTSC color Ntsc channel.svg
Radio spectrum of a System M television channel with NTSC color
World television systems
SystemLinesFrame rateChannel b/wVisual b/wSound offsetVestigial sidebandVision mod.Sound mod.Notes
J52530
(29.97 NTSC)
64.2+4.50.75neg.FM Japan (NTSC-J)
M52530
(29.97 NTSC)
64.2+4.50.75neg.FMMost of the Americas and Caribbean; Myanmar, Philippines, South Korea, Taiwan (all NTSC-M)
Brazil (PAL-M)

Color standards

Television color encoding by nation; Brazil (PAL-M) and all green countries (NTSC) are based on monochrome System M. PAL-NTSC-SECAM.svg
Television color encoding by nation; Brazil (PAL-M) and all green countries (NTSC) are based on monochrome System M.

NTSC-M and NTSC-J

Strictly speaking, System M does not designate how color is transmitted. However, in nearly every System M country, NTSC is used for color television, a combination called NTSC-M, but usually referred to more recently as simply "NTSC" because of the relative lack of importance of black-and-white television. In NTSC-M and Japan's NTSC-J, the frame rate is offset slightly, becoming 301.001 frames per second, usually labeled as the rounded number 29.97.

PAL

The main exception to NTSC is Brazil, where PAL color is used instead, resulting in the PAL-M combination unique to that country, which is monochrome-compatible with other System M countries, but not compatible with other PAL countries, which use different basic systems as their base. PAL-M signals are at 30 frames per second instead of slowing down to 29.97 like NTSC.

See also

Related Research Articles

Analog television Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

NTSC Analog color television system developed in the United States

NTSC, named after the National Television System Committee, is the analog television color system that was introduced in North America in 1954 and stayed in use until digital conversion. It was one of three major analog color television standards, the others being PAL and SECAM.

PAL Colour encoding system for analogue television

Phase Alternating Line (PAL) is a colour encoding system for analogue television used in broadcast television systems in most countries broadcasting at 625-line / 50 field per second (576i). It was one of three major analogue colour television standards, the others being NTSC and SECAM.

SECAM French analog color television system

SECAM, also written SÉCAM, is an analog color television system first used in France. It was one of three major color television standards, the others being PAL and NTSC.

Video Electronic moving image

Video is an electronic medium for the recording, copying, playback, broadcasting, and display of moving visual media. Video was first developed for mechanical television systems, which were quickly replaced by cathode ray tube (CRT) systems which were later replaced by flat panel displays of several types.

Interlaced video

Interlaced video is a technique for doubling the perceived frame rate of a video display without consuming extra bandwidth. The interlaced signal contains two fields of a video frame captured consecutively. This enhances motion perception to the viewer, and reduces flicker by taking advantage of the phi phenomenon.

Color television Television transmission technology

Color television is a television transmission technology that includes information on the color of the picture, so the video image can be displayed in color on the television set. It is considered an improvement on the earliest television technology, monochrome or black and white television, in which the image is displayed in shades of gray (grayscale). Television broadcasting stations and networks in most parts of the world upgraded from black and white to color transmission in the 1960s to the 1980s. The invention of color television standards is an important part of the history of television, and it is described in the technology of television article.

SMPTE timecode is a set of cooperating standards to label individual frames of video or film with a timecode. The system is defined by the Society of Motion Picture and Television Engineers in the SMPTE 12M specification. SMPTE revised the standard in 2008, turning it into a two-part document: SMPTE 12M-1 and SMPTE 12M-2, including new explanations and clarifications.

Broadcast television systems are the encoding or formatting standards for the transmission and reception of terrestrial television signals. There were three main analog television systems in use around the world until the late 2010s (expected): NTSC, PAL, and SECAM. Now in digital terrestrial television (DTT), there are four main systems in use around the world: ATSC, DVB, ISDB and DTMB.

NTSC-J Japanese variation of the NTSC analog television standard

NTSC-J was the analog television system and video display standard for the region of Japan that ceased operations in 44 of the country's 47 prefectures on July 24, 2011. Analog broadcasting ended on March 31, 2012 in the three prefectures devastated by the 2011 Tōhoku earthquake and tsunami.

PAL region Television publication territory that covers most of Asia, Africa, Australia, New Zealand, and Europe

The PAL region is a television publication territory that covers most of Asia, Africa, Europe, South America and Oceania. It is so named because of the PAL television standard traditionally used some of those regions, as opposed to the NTSC standard traditionally used in Japan and most of North America.

720p Video resolution

720p is a progressive HDTV signal format with 720 horizontal lines and an aspect ratio (AR) of 16:9, normally known as widescreen HDTV (1.78:1). All major HDTV broadcasting standards include a 720p format, which has a resolution of 1280×720; however, there are other formats, including HDV Playback and AVCHD for camcorders, that use 720p images with the standard HDTV resolution. The frame rate is standards-dependent, and for conventional broadcasting appears in 50 progressive frames per second in former PAL/SECAM countries, and 59.94 frames per second in former NTSC countries.

1080i is an abbreviation referring to a combination of frame resolution and scan type, used in high-definition television (HDTV) and high-definition video. The number "1080" refers to the number of horizontal lines on the screen. The "i" is an abbreviation for "interlaced"; this indicates that only the odd lines, then the even lines of each frame are drawn alternately, so that only half the number of actual image frames are used to produce video. A related display resolution is 1080p, which also has 1080 lines of resolution; the "p" refers to progressive scan, which indicates that the lines of resolution for each frame are "drawn" on the screen in sequence.

480i Standard-definition video mode

480i is a shorthand name for the video mode used for standard-definition analog or digital television in the Caribbean, Myanmar, Japan, South Korea, Taiwan, Philippines, Laos, Western Sahara, and most of the Americas. The 480 identifies a vertical resolution of 480 lines, and the i identifies it as an interlaced resolution. The field rate, which is 60 Hz, is sometimes included when identifying the video mode, i.e. 480i60; another notation, endorsed by both the International Telecommunication Union in BT.601 and SMPTE in SMPTE 259M, includes the frame rate, as in 480i/30. The other common standard, used in the other parts of the world, is 576i.

576i Standard-definition video mode

576i is a standard-definition video mode originally used for terrestrial television in most countries of the world where the utility frequency for electric power distribution is 50 Hz. Because of its close association with the colour encoding system, it is often referred to as simply PAL, PAL/SECAM or SECAM when compared to its 60 Hz NTSC-colour-encoded counterpart, 480i. In digital applications it is usually referred to as "576i"; in analogue contexts it is often called "625 lines", and the aspect ratio is usually 4:3 in analogue transmission and 16:9 in digital transmission.

MUSE, was an analog high-definition television system, using dot-interlacing and digital video compression to deliver 1125-line high definition video signals to the home. Japan had the earliest working HDTV system, which was named Hi-Vision with design efforts going back to 1979. The country began broadcasting wideband analog HDTV signals in 1989 using 1035 active lines interlaced in the standard 2:1 ratio (1035i) with 1125 lines total. By the time of its commercial launch in 1991, digital HDTV was already under development in the United States. Hi-Vision continued broadcasting in analog until 2007.

PAL-M

PAL-M is the analog TV system used in Brazil since February 19, 1972. At that time, Brazil was the first South American country to broadcast in color. Color TV broadcast began on February 19, 1972, when the TV networks Globo and Bandeirantes transmitted the Caxias do Sul Grape Festival. Transition from black and white to colour was not complete until 1978. Two years later, in 1980, colour broadcast nationwide in Brazil was commonplace.

Television standards conversion is the process of changing a television transmission or recording from one television system to another. The most common is from NTSC to PAL or the other way around. This is done so television programs in one nation may be viewed in a nation with a different standard. The video is fed through a video standards converter, which makes a copy in a different video system.

A field-sequential color system (FSC) is a color television system in which the primary color information is transmitted in successive images and which relies on the human vision system to fuse the successive images into a color picture. One field-sequential system was developed by Dr. Peter Goldmark for CBS, which was its sole user in commercial broadcasting. It was first demonstrated to the press on September 4, 1940, and first shown to the general public on January 12, 1950. The Federal Communications Commission adopted it on October 11, 1950, as the standard for color television in the United States, but it was later withdrawn.

High-definition television (HD) describes a television system providing an image resolution of substantially higher resolution than the previous generation of technologies. The term has been used since 1936, but in modern times refers to the generation following standard-definition television (SDTV), often abbreviated to HDTV or HD-TV. It is the current de facto standard video format used in most broadcasts: terrestrial broadcast television, cable television, satellite television and Blu-ray Discs.