CPI-0610

Last updated
CPI-0610
CPI-0610 structure.png
Identifiers
  • 2-[(4S)-6-(4-chlorophenyl)-1-methyl-4H-[1,2]oxazolo[5,4-d][2]benzazepin-4-yl]acetamide
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
Chemical and physical data
Formula C20H16ClN3O2
Molar mass 365.82 g·mol−1
3D model (JSmol)
  • CC1=NOC2=C1C3=CC=CC=C3C(=N[C@H]2CC(=O)N)C4=CC=C(C=C4)Cl
  • InChI=1S/C20H16ClN3O2/c1-11-18-14-4-2-3-5-15(14)19(12-6-8-13(21)9-7-12)23-16(10-17(22)25)20(18)26-24-11/h2-9,16H,10H2,1H3,(H2,22,25)/t16-/m0/s1
  • Key:GCWIQUVXWZWCLE-INIZCTEOSA-N

CPI-0610 is a drug which acts as a BET inhibitor, mainly acting at the BRD2 and BRD4 subtypes. It has potential applications in the treatment of various forms of cancer. [1] [2] [3] [4]

Related Research Articles

Experimental cancer treatments are mainstream medical therapies intended to treat cancer by improving on, supplementing or replacing conventional methods. However, researchers are still trying to determine whether these treatments are safe and effective treatments. Experimental cancer treatments are normally available only to people who participate in formal research programs, which are called clinical trials. Occasionally, a seriously ill person may be able to access an experimental drug through an expanded access program. Some of the treatments have regulatory approval for treating other conditions. Health insurance and publicly funded health care programs normally refuse to pay for experimental cancer treatments.

Vorinostat (rINN) also known as Suberoylanilide hydroxamic acid is a member of a larger class of compounds that inhibit histone deacetylases (HDAC). Histone deacetylase inhibitors (HDI) have a broad spectrum of epigenetic activities.

Histone deacetylase inhibitors are chemical compounds that inhibit histone deacetylases.

A hypomethylating agent is a drug that inhibits DNA methylation: the modification of DNA nucleotides by addition of a methyl group. Because DNA methylation affects cellular function through successive generations of cells without changing the underlying DNA sequence, treatment with a hypomethylating agent is considered a type of epigenetic therapy.

<span class="mw-page-title-main">Addiction</span> Disorder resulting in compulsive behaviours

Addiction is a neuropsychological disorder characterized by a persistent and intense urge to use a drug or engage in a behaviour that produces natural reward, despite substantial harm and other negative consequences. Repetitive drug use often alters brain function in ways that perpetuate craving, and weakens self-control. This phenomenon – drugs reshaping brain function – has led to an understanding of addiction as a brain disorder with a complex variety of psychosocial as well as neurobiological factors that are implicated in addiction's development. Classic signs of addiction include compulsive engagement in rewarding stimuli, preoccupation with substances or behavior, and continued use despite negative consequences. Habits and patterns associated with addiction are typically characterized by immediate gratification, coupled with delayed deleterious effects.

<span class="mw-page-title-main">Nivolumab</span> Cancer drug

Nivolumab, sold under the brand name Opdivo, is a medication used to treat a number of types of cancer. This includes melanoma, lung cancer, malignant pleural mesothelioma, renal cell carcinoma, Hodgkin lymphoma, head and neck cancer, urothelial carcinoma, colon cancer, esophageal squamous cell carcinoma, liver cancer, gastric cancer, and esophageal or gastroesophageal junction (GEJ) cancer. It is used by slow injection into a vein.

<span class="mw-page-title-main">Cancer epigenetics</span> Field of study in cancer research

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, if not even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. points out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in the promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as the silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. There are several medications which have epigenetic impact, that are now used in a number of these diseases.

<span class="mw-page-title-main">3-Deazaneplanocin A</span> Chemical compound

3-Deazaneplanocin A is a drug which acts as both a S-adenosylhomocysteine synthesis inhibitor and also a histone methyltransferase EZH2 inhibitor. Studies have shown that it has effects in vitro against a variety of different tumor cell lines.

Epigenetic therapy is the use of drugs or other epigenome-influencing techniques to treat medical conditions. Many diseases, including cancer, heart disease, diabetes, and mental illnesses are influenced by epigenetic mechanisms. Epigenetic therapy offers a potential way to influence those pathways directly.

<span class="mw-page-title-main">Apabetalone</span> Chemical compound

Apabetalone is an orally available small molecule created by Resverlogix Corp. that is being evaluated in clinical trials for the treatment of atherosclerosis and associated cardiovascular disease (CVD). In the phase II clinical trial ASSURE in patients with angiographic coronary disease and low high-density lipoprotein cholesterol (HDL-C) levels, apabetalone showed no greater increase in HDL-cholesterol (HDL-c) and apolipoprotein A-I (ApoA-I) levels or incremental regression of atherosclerosis than administration of placebo, while causing a statistically significant greater incidence of elevated liver enzymes. However, pooled analysis of the effect of apabetalone in three phase II clinical trials ASSERT, ASSURE, and SUSTAIN demonstrated increases in HDL-cholesterol (HDL-c) and apolipoprotein A-I (ApoA-I) levels, as well as decreases in the incidence of major adverse cardiac events (MACE). Reduction of MACE was more profound in patients with diabetes mellitus. In a short-term study in prediabetics, favorable changes in glucose metabolism were observed in patients receiving apabetalone. An international, multicenter phase III trial, “Effect of RVX000222 on Time to Major Adverse Cardiovascular Events in High-Risk Type 2 Diabetes Mellitus Subjects with Coronary Artery Disease” (BETonMACE) commenced in October 2015. The trial is designed to determine whether apabetalone in combination with statins can decrease cardiac events compared to treatment with statins alone.

BET inhibitors are a class of drugs that reversibly bind the bromodomains of Bromodomain and Extra-Terminal motif (BET) proteins BRD2, BRD3, BRD4, and BRDT, and prevent protein-protein interaction between BET proteins and acetylated histones and transcription factors.

<span class="mw-page-title-main">Melphalan flufenamide</span> Chemical compound

Melphalan flufenamide, sold under the brand names Pepaxto and Pepaxti, is an anticancer medication used to treat multiple myeloma.

<span class="mw-page-title-main">Islatravir</span> Chemical compound

Islatravir is an investigational drug for the treatment of HIV infection. It is classified as a nucleoside reverse transcriptase translocation inhibitor (NRTTI). Merck is developing a subdermal drug-eluting implant to administer islatravir.

<span class="mw-page-title-main">Mericitabine</span> Chemical compound

Mericitabine (RG-7128) is an antiviral drug, a deoxycytidine analog. It was developed as a treatment for hepatitis C, acting as a NS5B RNA polymerase inhibitor, but while it showed a good safety profile in clinical trials, it was not sufficiently effective to be used as a stand-alone agent. However mericitabine has been shown to boost the efficacy of other antiviral drugs when used alongside them, and as most modern treatment regimens for hepatitis C use a combination therapy of several antiviral drugs, clinical trials have continued to see if it can form a part of a clinically useful drug treatment program.

<span class="mw-page-title-main">Daprodustat</span> Chemical compound

Daprodustat, sold under the brand name Duvroq among others, is a medication that is used for the treatment of anemia due to chronic kidney disease. It is a hypoxia-inducible factor prolyl hydroxylase inhibitor. It is taken by mouth.

Pharmacoepigenetics is an emerging field that studies the underlying epigenetic marking patterns that lead to variation in an individual's response to medical treatment.

<span class="mw-page-title-main">GS-6620</span> Chemical compound

GS-6620 is an antiviral drug which is a nucleotide analogue. It was developed for the treatment of Hepatitis C but while it showed potent antiviral effects in early testing, it could not be successfully formulated into an oral dosage form due to low and variable absorption in the intestines which made blood levels unpredictable. It has however continued to be researched as a potential treatment for other viral diseases such as Ebola virus disease.

Broad-spectrum antivirals (BSAs) are a class of molecules or compounds, which inhibit the infection of multiple viruses from the same or different virus families. BSAs could be divided into experimental and investigational agents, and approved drugs. BSAs work by inhibiting viral proteins or by targeting host cell factors and processes exploited by different viruses during infection. As of 2021, there are 150 known BSAs in varying stages of development, effective against 78 human viruses. BSAs are potential candidates for treatment of emerging and re-emerging viruses, such as ebola, marburg, and SARS-CoV-2. Many BSAs show antiviral activity against other viruses than originally investigated. Efforts in drug repurposing for SARS-CoV-2 is currently underway. A database of BSAs and viruses they inhibit could be found here.

References

  1. Albrecht BK, Gehling VS, Hewitt MC, Vaswani RG, Côté A, Leblanc Y, et al. (February 2016). "Identification of a Benzoisoxazoloazepine Inhibitor (CPI-0610) of the Bromodomain and Extra-Terminal (BET) Family as a Candidate for Human Clinical Trials". Journal of Medicinal Chemistry. 59 (4): 1330–9. doi: 10.1021/acs.jmedchem.5b01882 . PMID   26815195.
  2. Zhao L, Okhovat JP, Hong EK, Kim YH, Wood GS (January 2019). "Preclinical Studies Support Combined Inhibition of BET Family Proteins and Histone Deacetylases as Epigenetic Therapy for Cutaneous T-Cell Lymphoma". Neoplasia. 21 (1): 82–92. doi:10.1016/j.neo.2018.11.006. PMC   6280696 . PMID   30529073.
  3. Raythatha J, Arnold L (November 2019). "The future of epigenetic therapy: CPI-0610 for the treatment of myeloidfibrosis". Epigenomics. 11 (14): 1553–1555. doi:10.2217/epi-2019-0274. PMID   31729905.
  4. Bankar A, Gupta V (April 2020). "Investigational non-JAK inhibitors for chronic phase myelofibrosis". Expert Opinion on Investigational Drugs. 29 (5): 461–474. doi: 10.1080/13543784.2020.1751121 . PMID   32245330.