C Object Processor

Last updated

The C Object Processor (COP) was a superset of the C programming language. It was used in the Vbase object-oriented database management system developed by Ontologic, Inc. The data model for Vbase was specified by a Type Definition Language (TDL).[ citation needed ] COP and TDL were influenced by CLU. By 1989, COP and TDL were replaced by C++ in Ontologic's second generation product, ONTOS. The company was also renamed ONTOS, Inc.

C (programming language) general-purpose programming language

C is a general-purpose, imperative computer programming language, supporting structured programming, lexical variable scope and recursion, while a static type system prevents many unintended operations. By design, C provides constructs that map efficiently to typical machine instructions, and it has therefore found lasting use in applications that were previously coded in assembly language. Such applications include operating systems, as well as various application software for computers ranging from supercomputers to embedded systems.

Object database database management system

An object database is a database management system in which information is represented in the form of objects as used in object-oriented programming. Object databases are different from relational databases which are table-oriented. Object-relational databases are a hybrid of both approaches.

Related Research Articles

Knowledge representation and reasoning is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can utilize to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.

In computer science and information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains.

Object-relational mapping in computer science is a programming technique for converting data between incompatible type systems using object-oriented programming languages. This creates, in effect, a "virtual object database" that can be used from within the programming language. There are both free and commercial packages available that perform object-relational mapping, although some programmers opt to construct their own ORM tools.

Object-relational database database management system

An object-relational database (ORD), or object-relational database management system (ORDBMS), is a database management system (DBMS) similar to a relational database, but with an object-oriented database model: objects, classes and inheritance are directly supported in database schemas and in the query language. In addition, just as with pure relational systems, it supports extension of the data model with custom data-types and methods.

In computer science, an object can be a variable, a data structure, a function, or a method, and as such, is a value in memory referenced by an identifier.

Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms.

The Web Ontology Language (OWL) is a family of knowledge representation languages for authoring ontologies. Ontologies are a formal way to describe taxonomies and classification networks, essentially defining the structure of knowledge for various domains: the nouns representing classes of objects and the verbs representing relations between the objects. Ontologies resemble class hierarchies in object-oriented programming but there are several critical differences. Class hierarchies are meant to represent structures used in source code that evolve fairly slowly whereas ontologies are meant to represent information on the Internet and are expected to be evolving almost constantly. Similarly, ontologies are typically far more flexible as they are meant to represent information on the Internet coming from all sorts of heterogeneous data sources. Class hierarchies on the other hand are meant to be fairly static and rely on far less diverse and more structured sources of data such as corporate databases.

A modeling language is any artificial language that can be used to express information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure.

IDEF

IDEF, initially abbreviation of ICAM Definition, renamed in 1999 as Integration DEFinition, refers to a family of modeling languages in the field of systems and software engineering. They cover a wide range of uses, from functional modeling to data, simulation, object-oriented analysis/design and knowledge acquisition. These "definition languages" were developed under funding from U.S. Air Force and although still most commonly used by them, as well as other military and United States Department of Defense (DoD) agencies, are in the public domain.

In aspect-oriented software development, cross-cutting concerns are aspects of a program that affect other concerns. These concerns often cannot be cleanly decomposed from the rest of the system in both the design and implementation, and can result in either scattering, tangling, or both.

Flavors, an early object-oriented extension to Lisp developed by Howard Cannon at the MIT Artificial Intelligence Laboratory for the Lisp machine and its programming language Lisp Machine Lisp, was the first programming language to include mixins. Symbolics used it for its Lisp machines, and eventually developed it into New Flavors; both the original and new Flavors were message passing OO models. It was hugely influential in the development of the Common Lisp Object System (CLOS).

Information model representation of conceptual relationships between things

An information model in software engineering is a representation of concepts and the relationships, constraints, rules, and operations to specify data semantics for a chosen domain of discourse. Typically it specifies relations between kinds of things, but may also include relations with individual things. It can provide sharable, stable, and organized structure of information requirements or knowledge for the domain context.

Knowledge-based engineering (KBE) is the application of knowledge-based systems technology to the domain of manufacturing design and production. The design process is inherently a knowledge-intensive activity, so a great deal of the emphasis for KBE is on the use of knowledge-based technology to support computer-aided design (CAD) however knowledge-based techniques can be applied to the entire product lifecycle.

F-logic is a knowledge representation and ontology language. F-logic combines the advantages of conceptual modeling with object-oriented, frame-based languages and offers a declarative, compact and simple syntax, as well as the well-defined semantics of a logic-based language.

A meronomy or partonomy is a type of hierarchy that deals with part–whole relationships, in contrast to a taxonomy whose categorisation is based on discrete sets. Accordingly, the unit of meronomical classification is meron, while the unit of taxonomical classification is taxon. These conceptual structures are used in linguistics and computer science, with applications in biology. The part–whole relationship is sometimes referred to as HAS-A, and corresponds to object composition in object-oriented programming. The study of meronomy is known as mereology, and in linguistics a meronym is the name given to a constituent part of, the substance of, or a member of something. "X" is a meronym of "Y" if an X is a part of a Y.

Cop commonly refers to:

Object-oriented programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data, in the form of fields, and code, in the form of procedures. A feature of objects is an object's procedures that can access and often modify the data fields of the object with which they are associated. In OOP, computer programs are designed by making them out of objects that interact with one another. OOP languages are diverse, but the most popular ones are class-based, meaning that objects are instances of classes, which also determine their types.

Flora-2 is an open source semantic rule-based system for knowledge representation and reasoning. The language of the system is derived from F-logic, HiLog, and Transaction logic. Being based on F-logic and HiLog implies that object-oriented syntax and higher-order representation are the major features of the system. Flora-2 also supports a form of defeasible reasoning called Logic Programming with Defaults and Argumentation Theories (LPDA). Applications include intelligent agents, Semantic Web, knowledge-bases networking, ontology management, integration of information, security policy analysis, automated database normalization, and more.

References