Last updated

Mount Mazama's eruption timeline, an example of caldera formation Mount Mazama eruption timeline.PNG
Mount Mazama's eruption timeline, an example of caldera formation

A caldera is a large cauldron-like hollow that forms shortly after the emptying of a magma chamber in a volcanic eruption. When large volumes of magma are erupted over a short time, structural support for the rock above the magma chamber is lost. The ground surface then collapses downward into the emptied or partially emptied magma chamber, leaving a massive depression at the surface (from one to dozens of kilometers in diameter). [1] Although sometimes described as a crater, the feature is actually a type of sinkhole, as it is formed through subsidence and collapse rather than an explosion or impact. Only seven caldera-forming collapses are known to have occurred since 1900, most recently at Bárðarbunga volcano, Iceland in 2014. [2]



The term caldera comes from Spanish caldera , and Latin caldaria , meaning "cooking pot". [3] In some texts the English term cauldron is also used, [4] though in more recent work the term cauldron refers to a caldera that has been deeply eroded to expose the beds under the caldera floor. [3] The term caldera was introduced into the geological vocabulary by the German geologist Leopold von Buch when he published his memoirs of his 1815 visit to the Canary Islands, [note 1] where he first saw the Las Cañadas caldera on Tenerife, with Montaña Teide dominating the landscape, and then the Caldera de Taburiente on La Palma. [5] [3]

Caldera formation

Animation of analogue experiment showing the origin of the volcanic caldera in box filled with flour. Origin of volcanic caldera via analogue model.gif
Animation of analogue experiment showing the origin of the volcanic caldera in box filled with flour.
Landsat image of Lake Toba, on the island of Sumatra, Indonesia (100 km/62 mi long and 30 km/19 mi wide, one of the world's largest calderas). A resurgent dome formed the island of Samosir. Toba zoom.jpg
Landsat image of Lake Toba, on the island of Sumatra, Indonesia (100 km/62 mi long and 30 km/19 mi wide, one of the world's largest calderas). A resurgent dome formed the island of Samosir.

A collapse is triggered by the emptying of the magma chamber beneath the volcano, sometimes as the result of a large explosive volcanic eruption (see Tambora [6] in 1815), but also during effusive eruptions on the flanks of a volcano (see Piton de la Fournaise in 2007) [7] or in a connected fissure system (see Bárðarbunga in 2014–2015). If enough magma is ejected, the emptied chamber is unable to support the weight of the volcanic edifice above it. A roughly circular fracture, the "ring fault", develops around the edge of the chamber. Ring fractures serve as feeders for fault intrusions which are also known as ring dikes. [8] :8689 Secondary volcanic vents may form above the ring fracture. [9] As the magma chamber empties, the center of the volcano within the ring fracture begins to collapse. The collapse may occur as the result of a single cataclysmic eruption, or it may occur in stages as the result of a series of eruptions. The total area that collapses may be hundreds of square kilometers. [3]

Mineralization in calderas

Caldera formation under water. Caldera formation.gif
Caldera formation under water.

Some calderas are known to host rich ore deposits. Metal-rich fluids can circulate through the caldera, forming hydrothermal ore deposits of metals such as lead, silver, gold, mercury, lithium and uranium. [10] One of the world's best-preserved mineralized calderas is the Sturgeon Lake Caldera in northwestern Ontario, Canada, which formed during the Neoarchean era [11] about 2.7 billion years ago. [12] In the San Juan volcanic field, ore veins were emplaced in fractures associated with several calderas, with the greatest mineralization taking place near the youngest and most silicic intrusions associated with each caldera. [13]

Types of caldera

Explosive caldera eruptions

Explosive caldera eruptions are produced by a magma chamber whose magma is rich in silica. Silica-rich magma has a high viscosity, and therefore does not flow easily like basalt. [8] :2326 The magma typically also contains a large amount of dissolved gases, up to 7 wt% for the most silica-rich magmas. [14] When the magma approaches the surface of the Earth, the drop in confining pressure causes the trapped gases to rapidly bubble out of the magma, fragmenting the magma to produce a mixture of volcanic ash and other tephra with the very hot gases. [15]

The mixture of ash and volcanic gases initially rises into the atmosphere as an eruption column. However, as the volume of erupted material increases, the eruption column is unable to entrain enough air to remain buoyant, and the eruption column collapses into a tephra fountain that falls back to the surface to form pyroclastic flows. [16] Eruptions of this type can spread ash over vast areas, so that ash flow tuffs emplaced by silicic caldera eruptions are the only volcanic product with volumes rivaling those of flood basalts. [8] :77 For example, when Yellowstone Caldera last erupted some 650,000 years ago, it released about 1,000 km3 of material (as measured in dense rock equivalent (DRE)), covering a substantial part of North America in up to two metres of debris. [17]

Eruptions forming even larger calderas are known, such as the La Garita Caldera in the San Juan Mountains of Colorado, where the 5,000 cubic kilometres (1,200 cu mi) Fish Canyon Tuff was blasted out in eruptions about 27.8 million years ago. [18] [19]

The caldera produced by such eruptions is typically filled in with tuff, rhyolite, and other igneous rocks. [20] The caldera is surrounded by an outflow sheet of ash flow tuff. [21] [22]

If magma continues to be injected into the collapsed magma chamber, the center of the caldera may be uplifted in the form of a resurgent dome such as is seen at the Valles Caldera, Lake Toba, the San Juan volcanic field, [23] Cerro Galán, [24] Yellowstone, [25] and many other calderas. [23]

Because a silicic caldera may erupt hundreds or even thousands of cubic kilometers of material in a single event, it can cause catastrophic environmental effects. Even small caldera-forming eruptions, such as Krakatoa in 1883 [26] or Mount Pinatubo in 1991, [27] may result in significant local destruction and a noticeable drop in temperature around the world. Large calderas may have even greater effects. The ecological effects of the eruption of a large caldera can be seen in the record of the Lake Toba eruption in Indonesia.

At some points in geological time, rhyolitic calderas have appeared in distinct clusters. The remnants of such clusters may be found in places such as the Eocene Rum Complex of Scotland, [20] the San Juan Mountains of Colorado (formed during the Oligocene, Miocene, and Pliocene epochs) or the Saint Francois Mountain Range of Missouri (erupted during the Proterozoic eon). [28]


Valle Caldera, New Mexico Valle Caldera, New Mexico.jpg
Valle Caldera, New Mexico

For their 1968 paper [23] that first introduced the concept of a resurgent caldera to geology, [3] R.L. Smith and R.A. Bailey chose the Valles caldera as their model. Although the Valles caldera is not unusually large, it is relatively young (1.25 million years old) and unusually well preserved, [29] and it remains one of the best studied examples of a resurgent caldera. [3] The ash flow tuffs of the Valles caldera, such as the Bandelier Tuff, were among the first to be thoroughly characterized. [30]


About 74,000 years ago, this Indonesian volcano released about 2,800 cubic kilometres (670 cu mi) dense-rock equivalent of ejecta. This was the largest known eruption during the ongoing Quaternary period (the last 2.6 million years) and the largest known explosive eruption during the last 25 million years. In the late 1990s, anthropologist Stanley Ambrose [31] proposed that a volcanic winter induced by this eruption reduced the human population to about 2,000–20,000 individuals, resulting in a population bottleneck. More recently, Lynn Jorde and Henry Harpending proposed that the human species was reduced to approximately 5,000-10,000 people. [32] There is no direct evidence, however, that either theory is correct, and there is no evidence for any other animal decline or extinction, even in environmentally sensitive species. [33] There is evidence that human habitation continued in India after the eruption. [34]

Satellite photograph of the summit caldera on Fernandina Island in the Galapagos archipelago. La Cumbre - ISS.JPG
Satellite photograph of the summit caldera on Fernandina Island in the Galápagos archipelago.
Oblique aerial photo of Nemrut Caldera, Van Lake, Eastern Turkey Nemrut Caldera aerial.jpg
Oblique aerial photo of Nemrut Caldera, Van Lake, Eastern Turkey

Non-explosive calderas

Sollipulli Caldera, located in central Chile near the border with Argentina, filled with ice. The volcano is in the southern Andes Mountains within Chile's Parque Nacional Villarica. Iss038e012569, Caldera Sollipulli.jpg
Sollipulli Caldera, located in central Chile near the border with Argentina, filled with ice. The volcano is in the southern Andes Mountains within Chile's Parque Nacional Villarica.

Some volcanoes, such as the large shield volcanoes Kīlauea and Mauna Loa on the island of Hawaii, form calderas in a different fashion. The magma feeding these volcanoes is basalt, which is silica poor. As a result, the magma is much less viscous than the magma of a rhyolitic volcano, and the magma chamber is drained by large lava flows rather than by explosive events. The resulting calderas are also known as subsidence calderas and can form more gradually than explosive calderas. For instance, the caldera atop Fernandina Island collapsed in 1968 when parts of the caldera floor dropped 350 metres (1,150 ft). [36]

Extraterrestrial calderas

Since the early 1960s, it has been known that volcanism has occurred on other planets and moons in the Solar System. Through the use of manned and unmanned spacecraft, volcanism has been discovered on Venus, Mars, the Moon, and Io, a satellite of Jupiter. None of these worlds have plate tectonics, which contributes approximately 60% of the Earth's volcanic activity (the other 40% is attributed to hotspot volcanism). [37] Caldera structure is similar on all of these planetary bodies, though the size varies considerably. The average caldera diameter on Venus is 68 km (42 mi). The average caldera diameter on Io is close to 40 km (25 mi), and the mode is 6 km (3.7 mi); Tvashtar Paterae is likely the largest caldera with a diameter of 290 km (180 mi). The average caldera diameter on Mars is 48 km (30 mi), smaller than Venus. Calderas on Earth are the smallest of all planetary bodies and vary from 1.6–80 km (1–50 mi) as a maximum. [38]

The Moon

The Moon has an outer shell of low-density crystalline rock that is a few hundred kilometers thick, which formed due to a rapid creation. The craters of the Moon have been well preserved through time and were once thought to have been the result of extreme volcanic activity, but actually were formed by meteorites, nearly all of which took place in the first few hundred million years after the Moon formed. Around 500 million years afterward, the Moon's mantle was able to be extensively melted due to the decay of radioactive elements. Massive basaltic eruptions took place generally at the base of large impact craters. Also, eruptions may have taken place due to a magma reservoir at the base of the crust. This forms a dome, possibly the same morphology of a shield volcano where calderas universally are known to form. [37] Although caldera-like structures are rare on the Moon, they are not completely absent. The Compton-Belkovich Volcanic Complex on the far side of the Moon is thought to be a caldera, possibly an ash-flow caldera. [39]


The volcanic activity of Mars is concentrated in two major provinces: Tharsis and Elysium. Each province contains a series of giant shield volcanoes that are similar to what we see on Earth and likely are the result of mantle hot spots. The surfaces are dominated by lava flows, and all have one or more collapse calderas. [37] Mars has the largest volcano in the Solar System, Olympus Mons, which is more than three times the height of Mount Everest, with a diameter of 520 km (323 miles). The summit of the mountain has six nested calderas. [40]


Because there is no plate tectonics on Venus, heat is mainly lost by conduction through the lithosphere. This causes enormous lava flows, accounting for 80% of Venus' surface area. Many of the mountains are large shield volcanoes that range in size from 150–400 km (95–250 mi) in diameter and 2–4 km (1.2–2.5 mi) high. More than 80 of these large shield volcanoes have summit calderas averaging 60 km (37 mi) across. [37]


Io, unusually, is heated by solid flexing due to the tidal influence of Jupiter and Io's orbital resonance with neighboring large moons Europa and Ganymede, which keep its orbit slightly eccentric. Unlike any of the planets mentioned, Io is continuously volcanically active. For example, the NASA Voyager 1 and Voyager 2 spacecraft detected nine erupting volcanoes while passing Io in 1979. Io has many calderas with diameters tens of kilometers across. [37]

List of volcanic calderas

Extraterrestrial Volcanic Calderas

Erosion calderas

See also


  1. Leopold von Buch's book Physical Description of the Canary Isles was published in 1825

Related Research Articles

Volcano rupture in the crust of a planetary-mass object that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

Mount Tambora Active stratovolcano in Indonesia

Mount Tambora, or Tomboro, is an active stratovolcano in the northern part of Sumbawa, one of the Lesser Sunda Islands of Indonesia. It was formed due to the active subduction zones beneath it, and before its 1815 eruption, it was more than 4,300 metres high, making it one of the tallest peaks in the Indonesian archipelago.

Stratovolcano Tall, conical volcano built up by many layers of hardened lava and other ejecta

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high-to-intermediate levels of silica, with lesser amounts of less-viscous mafic magma. Extensive felsic lava flows are uncommon, but have travelled as far as 15 km (9.3 mi).


Novarupta is a volcano that was formed in 1912, located on the Alaska Peninsula in Katmai National Park and Preserve, about 290 miles (470 km) southwest of Anchorage. Formed during the largest volcanic eruption of the 20th century, Novarupta released 30 times the volume of magma of the 1980 eruption of Mount St. Helens.

Yellowstone Caldera Volcanic caldera in Yellowstone National Park in the United states

The Yellowstone Caldera is a volcanic caldera and supervolcano in Yellowstone National Park in the Western United States, sometimes referred to as the Yellowstone Supervolcano. The caldera and most of the park are located in the northwest corner of Wyoming. The major features of the caldera measure about 34 by 45 miles.

Mount Bromo

Mount Bromo, is an active volcano and part of the Tengger massif, in East Java, Indonesia. At 2,329 meters (7,641 ft) it is not the highest peak of the massif, but is the best known. The massif area is one of the most visited tourist attractions in East Java, Indonesia. The volcano belongs to the Bromo Tengger Semeru National Park. The name of Bromo derived from Javanese pronunciation of Brahma, the Hindu creator god.

Mount Mazama Complex volcano in the Cascade Range

Mount Mazama is a complex volcano in the state of Oregon, United States, in a segment of the Cascade Volcanic Arc and Cascade Range. Most of the mountain collapsed following a major eruption approximately 7,700 years ago. The volcano is in Klamath County, in the southern Cascades, 60 miles (97 km) north of the Oregon-California border. Its collapse formed a caldera that holds Crater Lake. The mountain is in Crater Lake National Park. Mount Mazama originally had an elevation of 12,000 feet (3,700 m), but following its climactic eruption this was reduced to 8,157 feet (2,486 m). Crater Lake is 1,943 feet (592 m) deep, the deepest freshwater body in the US and the second deepest in North America after Great Slave Lake in Canada.

Mount Katmai

Mount Katmai is a large stratovolcano on the Alaska Peninsula in southern Alaska, located within Katmai National Park and Preserve. It is about 6.3 miles (10 km) in diameter with a central lake-filled caldera about two by three miles in size, formed during the Novarupta eruption of 1912. The caldera rim reaches a maximum elevation of 6,716 feet (2,047 m). In 1975 the surface of the crater lake was at an elevation of about 4,220 feet (1,286 m), and the estimated elevation of the caldera floor is about 3,400 ft (1,040 m). The mountain is located in Kodiak Island Borough, very close to its border with Lake and Peninsula Borough.

Volcanism of Iceland

The volcanoes of Iceland include a high concentration of active ones due to Iceland's location on the Mid-Atlantic Ridge, a divergent tectonic plate boundary, and its location over a hot spot.


Grímsvötn is a volcano with a fissure system located in Vatnajökull National Park, Iceland. The volcano itself is completely subglacial and located under the northwestern side of the Vatnajökull ice cap. The subglacial caldera is at 64°25′N17°20′W, at an elevation of 1,725 m (5,659 ft). Beneath the caldera is the magma chamber of the Grímsvötn volcano.

Yellowstone hotspot

The Yellowstone hotspot is a volcanic hotspot in the United States responsible for large scale volcanism in Idaho, Montana, Nevada, Oregon, and Wyoming as the North American tectonic plate moved over it. It formed the eastern Snake River Plain through a succession of caldera-forming eruptions. The resulting calderas include the Island Park Caldera, the Henry's Fork Caldera, and the Bruneau-Jarbidge caldera. The hotspot currently lies under the Yellowstone Caldera. The hotspot's most recent caldera-forming supereruption, known as the Lava Creek eruption, took place 640,000 years ago and created the Lava Creek Tuff, and the most recent Yellowstone Caldera. The Yellowstone hotspot is one of a few volcanic hotspots underlying the North American tectonic plate; another example is the Anahim hotspot.

Types of volcanic eruptions mechanisms of eruption

Several types of volcanic eruptions—during which lava, tephra, and assorted gases are expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

Phreatomagmatic eruption Volcanic eruption involving both steam and magma

Phreatomagmatic eruptions are volcanic eruptions resulting from interaction between magma and water. They differ from exclusively magmatic eruptions and phreatic eruptions. Unlike phreatic eruptions, the products of phreatomagmatic eruptions contain juvenile (magmatic) clasts. It is common for a large explosive eruption to have magmatic and phreatomagmatic components.

Silverthrone Caldera

The Silverthrone Caldera is a potentially active caldera complex in southwestern British Columbia, Canada, located over 350 kilometres (220 mi) northwest of the city of Vancouver and about 50 kilometres (31 mi) west of Mount Waddington in the Pacific Ranges of the Coast Mountains. The caldera is one of the largest of the few calderas in western Canada, measuring about 30 kilometres (19 mi) long (north-south) and 20 kilometres (12 mi) wide (east-west). Mount Silverthrone, an eroded lava dome on the caldera's northern flank that is 2,864 metres (9,396 ft) high, may be the highest volcano in Canada.

Mount Edziza volcanic complex

The Mount Edziza volcanic complex is a large and potentially active north-south trending complex volcano in Stikine Country, northwestern British Columbia, Canada, located 38 kilometres (24 mi) southeast of the small community of Telegraph Creek. It occupies the southeastern portion of the Tahltan Highland, an upland area of plateau and lower mountain ranges, lying east of the Boundary Ranges and south of the Inklin River, which is the east fork of the Taku River. As a volcanic complex, it consists of many types of volcanoes, including shield volcanoes, calderas, lava domes, stratovolcanoes, and cinder cones.

Lava Molten rock expelled by a volcano during an eruption

Lava is molten rock (magma) that has been expelled from the interior of a terrestrial planet or a moon. Magma is generated by the internal heat of the planet or moon and it is erupted as lava at volcanoes or through fractures in the crust, usually at temperatures from 800 to 1,200 °C. The volcanic rock resulting from subsequent cooling is also often described as lava.

Timeline of volcanism on Earth

This timeline of volcanism on Earth includes a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic Explosivity Index (VEI) or equivalent sulfur dioxide emission during the Quaternary period. Other volcanic eruptions are also listed.

Calabozos Mountain in Chile

Calabozos is a Holocene caldera in central Chile's Maule Region. Part of the Chilean Andes' volcanic segment, it is considered a member of the Southern Volcanic Zone (SVZ), one of the three distinct volcanic belts of South America. This most active section of the Andes runs along central Chile's western edge, and includes more than 70 of Chile's stratovolcanoes and volcanic fields. Calabozos lies in an extremely remote area of poorly glaciated mountains.

Kurile Lake

Kurile Lake is a caldera and crater lake in Kamchatka, Russia. It is also known as Kurilskoye Lake or Kuril Lake. It is part of the Eastern Volcanic Zone of Kamchatka which, together with the Sredinny Range, forms one of the volcanic belts of Kamchatka. These volcanoes form from the subduction of the Pacific Plate beneath the Okhotsk Plate and the Asian Plate.


  1. Troll, V. R.; Walter, T. R.; Schmincke, H.-U. (1 February 2002). "Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence". Geology. 30 (2): 135–138. Bibcode:2002Geo....30..135T. doi:10.1130/0091-7613(2002)030<0135:CCCPOP>2.0.CO;2. ISSN   0091-7613.
  2. Gudmundsson, Magnús T.; Jónsdóttir, Kristín; Hooper, Andrew; Holohan, Eoghan P.; Halldórsson, Sæmundur A.; Ófeigsson, Benedikt G.; Cesca, Simone; Vogfjörd, Kristín S.; Sigmundsson, Freysteinn; Högnadóttir, Thórdís; Einarsson, Páll; Sigmarsson, Olgeir; Jarosch, Alexander H.; Jónasson, Kristján; Magnússon, Eyjólfur; Hreinsdóttir, Sigrún; Bagnardi, Marco; Parks, Michelle M.; Hjörleifsdóttir, Vala; Pálsson, Finnur; Walter, Thomas R.; Schöpfer, Martin P. J.; Heimann, Sebastian; Reynolds, Hannah I.; Dumont, Stéphanie; Bali, Eniko; Gudfinnsson, Gudmundur H.; Dahm, Torsten; Roberts, Matthew J.; Hensch, Martin; Belart, Joaquín M. C.; Spaans, Karsten; Jakobsson, Sigurdur; Gudmundsson, Gunnar B.; Fridriksdóttir, Hildur M.; Drouin, Vincent; Dürig, Tobias; Aðalgeirsdóttir, Guðfinna; Riishuus, Morten S.; Pedersen, Gro B. M.; van Boeckel, Tayo; Oddsson, Björn; Pfeffer, Melissa A.; Barsotti, Sara; Bergsson, Baldur; Donovan, Amy; Burton, Mike R.; Aiuppa, Alessandro (15 July 2016). "Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow" (PDF). Science. 353 (6296): aaf8988. doi:10.1126/science.aaf8988. PMID   27418515. S2CID   206650214.
  3. 1 2 3 4 5 6 Cole, J; Milner, D; Spinks, K (February 2005). "Calderas and caldera structures: a review". Earth-Science Reviews. 69 (1–2): 1–26. doi:10.1016/j.earscirev.2004.06.004.
  4. Smith, Robert L.; Bailey, Roy A. (1968). "Resurgent Cauldrons". Geological Society of America Memoirs. 116: 613–662. doi:10.1130/MEM116-p613.
  5. von Buch, L. (1820). Ueber die Zusammensetzung der basaltischen Inseln und ueber Erhebungs-Cratere. Berlin: University of Lausanne. Retrieved 28 December 2020.
  6. Greshko, Michael. "201 Years Ago, This Volcano Caused a Climate Catastrophe". National Geographic. National Geographic. Retrieved 2 September 2020.
  7. "Piton de la Fournaise". Smithsonian Institution. 2019.
  8. 1 2 3 Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. ISBN   9780521880060.
  9. Dethier, David P.; Kampf, Stephanie K. (2007). Geology of the Jemez Region II. Ne Mexico Geological Society. p. 499 p. Retrieved 6 November 2015.
  10. John, D. A. (1 February 2008). "Supervolcanoes and Metallic Ore Deposits". Elements. 4 (1): 22. doi:10.2113/GSELEMENTS.4.1.22.
  11. "UMD: Precambrian Research Center". University of Minnesota, Duluth. Archived from the original on 4 March 2016. Retrieved 20 March 2014.
  12. Ron Morton. "Caldera Volcanoes". University of Minnesota, Duluth. Retrieved 3 July 2015.
  13. Steven, Thomas A.; Luedke, Robert G.; Lipman, Peter W. (1974). "Relation of mineralization to calderas in the San Juan volcanic field, southwestern Colorado". J. Res. US Geol. Surv. 2: 405–409.
  14. Schmincke, Hans-Ulrich (2003). Volcanism. Berlin: Springer. pp. 42–43. ISBN   9783540436508.
  15. Schmincke 2003, pp. 155-157.
  16. Schmincke 2003, p. 157.
  17. Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry (10 May 2005). "Steam Explosions, Earthquakes, and Volcanic Eruptions—What's in Yellowstone's Future? – U.S. Geological Survey Fact Sheet 2005–3024". United States Geological Survey.Cite journal requires |journal= (help)
  18. "What's the Biggest Volcanic Eruption Ever?". 10 November 2010. Retrieved 1 February 2014.
  19. Best, Myron G.; Christiansen, Eric H.; Deino, Alan L.; Gromme, Sherman; Hart, Garret L.; Tingey, David G. (August 2013). "The 36–18 Ma Indian Peak–Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions". Geosphere. 9 (4): 864–950. Bibcode:2013Geosp...9..864B. doi: 10.1130/GES00902.1 .
  20. 1 2 Troll, Valentin R.; Emeleus, C. Henry; Donaldson, Colin H. (1 November 2000). "Caldera formation in the Rum Central Igneous Complex, Scotland". Bulletin of Volcanology. 62 (4): 301–317. Bibcode:2000BVol...62..301T. doi:10.1007/s004450000099. ISSN   1432-0819. S2CID   128985944.
  21. Best, Myron G.; Christiansen, Eric H.; Deino, Alan L.; Grommé, C. Sherman; Tingey, David G. (10 December 1995). "Correlation and emplacement of a large, zoned, discontinuously exposed ash flow sheet: The 40 Ar/ 39 Ar chronology, paleomagnetism, and petrology of the Pahranagat Formation, Nevada". Journal of Geophysical Research: Solid Earth. 100 (B12): 24593–24609. doi:10.1029/95JB01690.
  22. Cook, Geoffrey W.; Wolff, John A.; Self, Stephen (February 2016). "Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico". Bulletin of Volcanology. 78 (2): 10. doi:10.1007/s00445-016-1000-0.
  23. 1 2 3 Smith, Robert L.; Bailey, Roy A. (1968). "Resurgent Cauldrons". Geological Society of America Memoirs. 116: 613–662. doi:10.1130/MEM116-p613.
  24. Grocke, Stephanie B.; Andrews, Benjamin J.; de Silva, Shanaka L. (November 2017). "Experimental and petrological constraints on long-term magma dynamics and post-climactic eruptions at the Cerro Galán caldera system, NW Argentina". Journal of Volcanology and Geothermal Research. 347: 296–311. doi:10.1016/j.jvolgeores.2017.09.021.
  25. Tizzani, P.; Battaglia, M.; Castaldo, R.; Pepe, A.; Zeni, G.; Lanari, R. (April 2015). "Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling, and gravity measurements". Journal of Geophysical Research: Solid Earth. 120 (4): 2627–2647. doi: 10.1002/2014JB011502 .
  26. Schaller, N; Griesser, T; Fischer, A; Stickler, A. and; Brönnimann, S. (2009). "Climate effects of the 1883 Krakatoa eruption: Historical and present perspectives". Vjschr. Natf. Ges. Zürich. 154: 31–40. Retrieved 29 December 2020.
  27. Robock, A. (15 February 2002). "PINATUBO ERUPTION: The Climatic Aftermath". Science. 295 (5558): 1242–1244. doi:10.1126/science.1069903.
  28. Kisvarsanyi, Eva B. (1981). Geology of the Precambrian St. Francois Terrane, Southeastern Missouri. Missouri Department of Natural Resources, Division of Geology and Land Survey. OCLC   256041399.[ page needed ]
  29. Goff, Fraser; Gardner, Jamie N.; Reneau, Steven L.; Kelley, Shari A.; Kempter, Kirt A.; Lawrence, John R. (2011). "Geologic map of the Valles caldera, Jemez Mountains, New Mexico". New Mexico Bureau of Geology and Mineral Resources Map Series. 79. Retrieved 18 May 2020.
  30. Ross, Clarence S.; Smith, Robert L. (1961). "Ash-flow tuffs: Their origin, geologic relations, and identification". U.S. Geological Survey Professional Paper. 366. doi: 10.3133/pp366 .
  31. "Stanley Ambrose page". University of Illinois at Urbana-Champaign. Retrieved 20 March 2014.
  32. Supervolcanoes, BBC2, 3 February 2000
  33. Gathorne-Hardy, F.J; Harcourt-Smith, W.E.H (September 2003). "The super-eruption of Toba, did it cause a human bottleneck?". Journal of Human Evolution. 45 (3): 227–230. doi:10.1016/s0047-2484(03)00105-2. PMID   14580592.
  34. Petraglia, M.; Korisettar, R.; Boivin, N.; Clarkson, C.; Ditchfield, P.; Jones, S.; Koshy, J.; Lahr, M. M.; Oppenheimer, C.; Pyle, D.; Roberts, R.; Schwenninger, J.-L.; Arnold, L.; White, K. (6 July 2007). "Middle Paleolithic Assemblages from the Indian Subcontinent Before and After the Toba Super-Eruption". Science. 317 (5834): 114–116. Bibcode:2007Sci...317..114P. doi:10.1126/science.1141564. PMID   17615356. S2CID   20380351.
  35. "EO". 23 December 2013. Retrieved 20 March 2014.
  36. "Fernandina: Photo". Global Volcanism Program . Smithsonian Institution.
  37. 1 2 3 4 5 Parfitt, L.; Wilson, L. (19 February 2008). "Volcanism on Other Planets". Fundamentals of Physical Volcanology . Malden, MA: Blackwell Publishing. pp.  190–212. ISBN   978-0-632-05443-5. OCLC   173243845.
  38. Gudmundsson, Agust (2008). "Magma-Chamber Geometry, Fluid Transport, Local Stresses and Rock Behaviour During Collapse Caldera Formation". Caldera Volcanism: Analysis, Modelling and Response. Developments in Volcanology. 10. pp. 313–349. doi:10.1016/S1871-644X(07)00008-3. ISBN   978-0-444-53165-0.
  39. Chauhan, M.; Bhattacharya, S.; Saran, S.; Chauhan, P.; Dagar, A. (June 2015). "Compton–Belkovich Volcanic Complex (CBVC): An ash flow caldera on the Moon". Icarus. 253: 115–129. Bibcode:2015Icar..253..115C. doi:10.1016/j.icarus.2015.02.024.
  40. Philip's World Reference Atlas including Stars and Planets ISBN   0-7537-0310-6 Publishing House Octopus publishing Group Ltd p. 9
  41. "Borrowdale Volcanic Group, upper silicic eruptive phase, Caradoc magmatism, Ordovician, Northern England - Earthwise".
  42. Clemens, J.D.; Birch, W.D. (December 2012). "Assembly of a zoned volcanic magma chamber from multiple magma batches: The Cerberean Cauldron, Marysville Igneous Complex, Australia". Lithos. 155: 272–288. Bibcode:2012Litho.155..272C. doi:10.1016/j.lithos.2012.09.007.

Further reading