Calvin Souther Fuller

Last updated
Calvin Souther Fuller
Calvin S Fuller Diffuse.jpeg
Born(1902-05-25)May 25, 1902
DiedOctober 28, 1994(1994-10-28) (aged 92)
Nationality American
Citizenship United States
Alma mater University of Chicago, PhD
Known for Invention of the solar cell
AwardsElected to US National Inventors Hall of Fame, May 2, 2008, for invention of the "Silicon Solar Cell" along with Daryl Chapin and Gerald Pearson.

Elected to New Jersey Inventors Hall of Fame, June 22, 2006, for Development of the Semiconductor Photovoltaic Solar Cell. Winner of Alfred Krupp Award, Heidelberg University, Germany.

Received the

Contents

John Price Wetherill Medal in 1963.
Scientific career
Fields Physical Chemistry
Institutions AT&T Bell Laboratories

Calvin Souther Fuller (May 25, 1902 October 28, 1994) was an American physical chemist at AT&T Bell Laboratories where he worked for 37 years from 1930 to 1967. Fuller was part of a team in basic research that found answers to physical challenges. He helped develop synthetic rubber during World War II, he was involved in early experiments of zone melting, he is credited with devising the method of transistor production yielding diffusion transistors, he produced some of the first solar cells with high efficiency, and he researched polymers and their applications.

Early life

Calvin Souther Fuller at work (left) at a printing press as a teenager at the end of World War I. Calvin Souther Fuller at work.jpg
Calvin Souther Fuller at work (left) at a printing press as a teenager at the end of World War I.

Calvin Fuller was born in Chicago 25 May 1902 to Julius Quincy and Bessie Souther Fuller. Studying chemistry at the University of Chicago, he received his B.S. in 1926, and working with William Draper Harkins, earned a Ph.D. degree in 1929.

From 1920 to 1922 he worked for the General Chemical Company, and from 1924 to 1930 for the Chicago Tribune . In 1930 he moved to Murray Hill, New Jersey, to take up a position as physical chemist for Bell Labs. On 17 September 1932 he married Willimine Works. [1]

In August 1942 Fuller became part of the effort to develop synthetic rubber as the supply of natural rubber was cut off by the Japanese. He travelled widely in the USA representing the Office of Rubber Reserve in the Reconstruction Finance Corporation. The effort involved several academic and industrial laboratories as well as scientists W.O. Baker and J.H. Heiss of Bell Labs. In 16 months they were able to begin production of Government Rubber-Styrene. Fuller and Baker developed methods to perfect the chemical process for large scale manufacturing. There were 700,000 tons of the synthetic rubber produced in 1945. [2] [3]

Solar battery

Working with Bell Telephone scientists Daryl Chapin and Gerald Pearson, Fuller diffused boron into silicon to capture the Sun's power. In doing so, they created the first practical means of collecting energy from the Sun and turning it into a current of electricity. The invention of the solar battery resulted in a 600% improvement in the ability to harness the Sun's power into electricity. First, Fuller ensured that silicon was uncorrupted and pure. Then Fuller accomplished the diffusion of boron into silicon. The inventors used several small strips of silicon to capture sunlight and render it into free electrons. Bell Laboratories, who had funded the research, announced the prototype manufacture of a new solar battery. [4]

Robert W. Fuller, Calvin S. Fuller's oldest son, tells the following story: "In 1954 I was home from vacation from college to visit my parents. That night my father, Calvin Souther Fuller, came home with something that looked like a quarter with wires sticking out of it. This was a device that connected to a small electric windmill that stood on the table. He shined a bright flashlight on the quarter-like object, which was actually silicon solar cell, and the blades of the windmill started turning. It was so exciting to see the flashlight power the tiny windmill. While this device looked like a quarter to anyone else, it was actually the world's first silicon solar battery - a device that later become known as the silicon solar cell."

The first public service trial of the Bell Solar Battery began with a telephone carrier system in 1955 in Americus, Georgia. [5] [6] By 1958, the US Department of Defense realized an extremely valuable application of this device as it deployed self-sufficient, power to vehicles and satellites in space.

Polymers

Fuller did basic research on polymers at Bell Labs. He studied how the bonds of the mers determined elasticity and tensile strength. Extending the work of Carothers at Du Pont, he investigated the condensation polymers polyester and polyamide. [7]

Bell was seeking an ideal insulator to use in coaxial cables which would be effective for high frequency operation. Realizing that polyethylene was free of polar groups, Fuller produced some of the first cable with this now common insulator. [8]

Personal life

Fuller was married to Willmine Fuller. They had three children, Robert W. Fuller, Stephen Fuller, and John Fuller and eight grandchildren. Fuller moved to Vero Beach, Florida when he reached age 65 and was subject to mandatory retirement from Bell Labs. In retirement he acquired an Airstream RV and traveled widely in the US with Willmine. In 1994 Fuller died in Vero Beach, Florida, at age 92. [9] According to stories told by Calvin's son Robert Fuller to his grandson, Ben Fuller, Calvin Fuller's hobbies included cultivating large red homegrown tomatoes in his New Jersey garden, photography of family and landscape images, and being capable of performing a wide range of home repairs and home improvements.

Related Research Articles

<span class="mw-page-title-main">MEMS</span> Very small devices that incorporate moving components

MEMS is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size, and MEMS devices generally range in size from 20 micrometres to a millimetre, although components arranged in arrays can be more than 1000 mm2. They usually consist of a central unit that processes data and several components that interact with the surroundings.

<span class="mw-page-title-main">Organic electronics</span> Field of materials science

Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from organic (carbon-based) molecules or polymers using synthetic strategies developed in the context of organic chemistry and polymer chemistry.

<span class="mw-page-title-main">Polymer</span> Substance composed of macromolecules with repeating structural units

A polymer is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

<span class="mw-page-title-main">Silicon</span> Chemical element, symbol Si and atomic number 14

Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic table: carbon is above it; and germanium, tin, lead, and flerovium are below it. It is relatively unreactive. Silicon (Si) element is a significant element that is essential for several physiological and metabolic processes in plants. Si is widely regarded as the predominant semiconductor material due to its versatile applications in various electrical devices such as transistors, solar cells, integrated circuits, and others. These may be due to its significant band gap, expansive optical transmission range, extensive absorption spectrum, surface roughening, and effective anti-reflection coating.

A semiconductor is a material that has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity generally falls as its temperature rises; metals behave in the opposite way. In many cases their conducting properties may be altered in useful ways by introducing impurities ("doping") into the crystal structure. When two differently doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers, which include electrons, ions, and electron holes, at these junctions is the basis of diodes, transistors, and most modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits, and others. Silicon is a critical element for fabricating most electronic circuits.

<span class="mw-page-title-main">Gallium arsenide</span> Chemical compound

Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure.

<span class="mw-page-title-main">Doping (semiconductor)</span> Intentional introduction of impurities into an intrinsic semiconductor

In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties. The doped material is referred to as an extrinsic semiconductor.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation.

<span class="mw-page-title-main">Shockley Semiconductor Laboratory</span> Pioneering semiconductor developer founded by William Shockley

Shockley Semiconductor Laboratory, later known as Shockley Transistor Corporation, was a pioneering semiconductor developer founded by William Shockley, and funded by Beckman Instruments, Inc., in 1955. It was the first high technology company in what came to be known as Silicon Valley to work on silicon-based semiconductor devices.

Russell Shoemaker Ohl was an American scientist who is generally recognized for patenting the modern solar cell . Ohl was a notable semiconductor researcher prior to the invention of the transistor. He was also known as R.S. Ohl.

<span class="mw-page-title-main">Pentacene</span> Hydrocarbon compound (C22H14) made of 5 fused benzene rings

Pentacene is a polycyclic aromatic hydrocarbon consisting of five linearly-fused benzene rings. This highly conjugated compound is an organic semiconductor. The compound generates excitons upon absorption of ultra-violet (UV) or visible light; this makes it very sensitive to oxidation. For this reason, this compound, which is a purple powder, slowly degrades upon exposure to air and light.

<span class="mw-page-title-main">Potential applications of carbon nanotubes</span>

Carbon nanotubes (CNTs) are cylinders of one or more layers of graphene (lattice). Diameters of single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) are typically 0.8 to 2 nm and 5 to 20 nm, respectively, although MWNT diameters can exceed 100 nm. CNT lengths range from less than 100 nm to 0.5 m.

<span class="mw-page-title-main">Printed electronics</span> Electronic devices created by various printing methods

Printed electronics is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. By electronic-industry standards, these are low-cost processes. Electrically functional electronic or optical inks are deposited on the substrate, creating active or passive devices, such as thin film transistors; capacitors; coils; resistors. Some researchers expect printed electronics to facilitate widespread, very low-cost, low-performance electronics for applications such as flexible displays, smart labels, decorative and animated posters, and active clothing that do not require high performance.

A diffused junction transistor is a transistor formed by diffusing dopants into a semiconductor substrate. The diffusion process was developed later than the alloy-junction and grown junction processes for making bipolar junction transistors (BJTs).

Gerald L. Pearson was an American physicist whose work on silicon rectifiers at Bell Labs led to the invention of the solar cell. In 2008, he was inducted into the National Inventors Hall of Fame.

<span class="mw-page-title-main">Solid</span> State of matter

Solid is one of the four fundamental states of matter along with liquid, gas, and plasma. The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice, or irregularly. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.

William Gardner Pfann was an inventor and materials scientist with Bell Labs. Pfann is known for his development of zone melting which is essential to the semiconductor industry. As stated in an official history of Bell Labs, "Timely invention of zone refining by W.G.Pfann ... was a major contribution that helped bring the impurities in germanium and silicon under control."

Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium ion batteries, thermoelectrics and sensors. Initial synthesis of SiNWs is often accompanied by thermal oxidation steps to yield structures of accurately tailored size and morphology.

<span class="mw-page-title-main">Daryl Chapin</span> American physicist

Daryl Muscott Chapin was an American physicist, best known for co-inventing solar cells in 1954 during his work at Bell Labs alongside Calvin S. Fuller and Gerald Pearson. For this, he was inducted into the National Inventors Hall of Fame in 2008.

References

  1. Allen G. Debus (1968) World Who's Who in Science, Marquis-Who's Who
  2. Millman(1983) p 519
  3. M.D. Fagan (1978) A History of Engineering and Science in the Bell System, volume 2: National Service in War and Peace, p 345, Bell Labs, ISBN   0-932764-00-2
  4. Millman (1983) p 432
  5. S. A. Abbasi; Naseema Abbasi (2004). Renewable Energy Sources and Their Environmental Impact. PHI Learning Pvt. Ltd. p. 20. ISBN   978-81-203-1902-8.
  6. Bellis, Mary. "History of Solar Cells". about.com. Archived from the original on 13 July 2012. Retrieved 5 October 2010.
  7. Millman(1983) p 482
  8. Millman (1983) p 484
  9. "SOLAR CELL INVENTOR DIES". Palm Beach Post . 2 November 1994.