Carboniferous

Last updated
Carboniferous Period
358.9–298.9 million years ago
Є
O
S
D
C
P
T
J
K
Pg
N
Karoo Glaciation.png

Approximate location of the continents around Carboniferous-Permian boundary.

Contents

Mean atmospheric O
2
content over period duration
c. 32.3 vol %
(162 % of modern level)
Mean atmospheric CO
2
content over period duration
c. 800 ppm
(3 times pre-industrial level)
Mean surface temperature over period durationc. 14 °C
(0 °C above modern level)
Sea level (above present day)Falling from 120 m to present-day level throughout the Mississippian, then rising steadily to about 80 m at end of period [1]
Key events in the Carboniferous
-360 
-355 
-350 
-345 
-340 
-335 
-330 
-325 
-320 
-315 
-310 
-305 
-300 
-295 

The Carboniferous ( /ˌkɑːr.bəˈnɪf.ər.əs/ KAHR-bə-NIF-ər-əs) [2] is a geologic period and system that spans 60 million years from the end of the Devonian Period 358.9 million years ago (Mya), to the beginning of the Permian Period, 298.9 Mya. The name Carboniferous means "coal-bearing" and derives from the Latin words carbō ("coal") and ferō ("I bear, I carry"), and was coined by geologists William Conybeare and William Phillips in 1822. [3]

Based on a study of the British rock succession, it was the first of the modern 'system' names to be employed, and reflects the fact that many coal beds were formed globally during that time. [4] The Carboniferous is often treated in North America as two geological periods, the earlier Mississippian and the later Pennsylvanian. [5] Terrestrial animal life was well established by the Carboniferous period. [6] Amphibians were the dominant land vertebrates, of which one branch would eventually evolve into amniotes, the first solely terrestrial vertebrates.

Arthropods were also very common, and many (such as Meganeura ) were much larger than those of today. Vast swaths of forest covered the land, which would eventually be laid down and become the coal beds characteristic of the Carboniferous stratigraphy evident today. The atmospheric content of oxygen also reached its highest levels in geological history during the period, 35% [7] compared with 21% today, allowing terrestrial invertebrates to evolve to great size. [7]

The later half of the period experienced glaciations, low sea level, and mountain building as the continents collided to form Pangaea. A minor marine and terrestrial extinction event, the Carboniferous rainforest collapse, occurred at the end of the period, caused by climate change. [8]

Subdivisions

In the United States the Carboniferous is usually broken into Mississippian (earlier) and Pennsylvanian (later) subperiods. The Mississippian is about twice as long as the Pennsylvanian, but due to the large thickness of coal-bearing deposits with Pennsylvanian ages in Europe and North America, the two subperiods were long thought to have been more or less equal in duration. [9]

In Europe the Lower Carboniferous sub-system is known as the Dinantian, comprising the Tournaisian and Visean Series, dated at 362.5-332.9 Ma, and the Upper Carboniferous sub-system is known as the Silesian, comprising the Namurian, Westphalian, and Stephanian Series, dated at 332.9-298.9 Ma. The Silesian is roughly contemporaneous with the late Mississippian Serpukhovian plus the Pennsylvanian. In Britain the Dinantian is traditionally known as the Carboniferous Limestone, the Namurian as the Millstone Grit, and the Westphalian as the Coal Measures and Pennant Sandstone.

The International Commission on Stratigraphy (ICS) faunal stages (in bold) from youngest to oldest, together with some of their regional subdivisions, are:

System Series
(NW Europe)
Stage
(NW Europe)
Series
(ICS)
Stage
(ICS)
Age
(Ma)
Permian younger
Carboniferous Silesian Stephanian Pennsylvanian Gzhelian 298.9–303.7
Westphalian Kasimovian 303.7–307.0
Moscovian 307.0–315.2
Bashkirian 315.2–323.2
Namurian
Mississippian Serpukhovian 323.2–330.9
Dinantian Visean Visean 330.9–346.7
Tournaisian Tournaisian 346.7–358.9
Devonian older
Subdivisions of the Carboniferous system in Europe compared with the official ICS-stages (as of 2018)

Late Pennsylvanian: Gzhelian (most recent)

  • Noginskian / Virgilian (part)

Late Pennsylvanian: Kasimovian

  • Klazminskian
  • Dorogomilovskian / Virgilian (part)
  • Chamovnicheskian / Cantabrian / Missourian
  • Krevyakinskian / Cantabrian / Missourian

Middle Pennsylvanian: Moscovian

  • Myachkovskian / Bolsovian / Desmoinesian
  • Podolskian / Desmoinesian
  • Kashirskian / Atokan
  • Vereiskian / Bolsovian / Atokan

Early Pennsylvanian: Bashkirian / Morrowan

  • Melekesskian / Duckmantian
  • Cheremshanskian / Langsettian
  • Yeadonian
  • Marsdenian
  • Kinderscoutian

Late Mississippian: Serpukhovian

  • Alportian
  • Chokierian / Chesterian / Elvirian
  • Arnsbergian / Elvirian
  • Pendleian

Middle Mississippian: Visean

  • Brigantian / St Genevieve / Gasperian / Chesterian
  • Asbian / Meramecian
  • Holkerian / Salem
  • Arundian / Warsaw / Meramecian
  • Chadian / Keokuk / Osagean (part) / Osage (part)

Early Mississippian: Tournaisian (oldest)

  • Ivorian / (part) / Osage (part)
  • Hastarian / Kinderhookian / Chouteau

Palaeogeography

A global drop in sea level at the end of the Devonian reversed early in the Carboniferous; this created the widespread inland seas and the carbonate deposition of the Mississippian. [10] There was also a drop in south polar temperatures; southern Gondwanaland was glaciated throughout the period, though it is uncertain if the ice sheets were a holdover from the Devonian or not. [10] These conditions apparently had little effect in the deep tropics, where lush swamps, later to become coal, flourished to within 30 degrees of the northernmost glaciers. [10]

Generalized geographic map of the United States in Middle Pennsylvanian time. US pennsylvanian general USGS.jpg
Generalized geographic map of the United States in Middle Pennsylvanian time.

Mid-Carboniferous, a drop in sea level precipitated a major marine extinction, one that hit crinoids and ammonites especially hard. [10] This sea level drop and the associated unconformity in North America separate the Mississippian subperiod from the Pennsylvanian subperiod. This happened about 323 million years ago, at the onset of the Permo-Carboniferous Glaciation. [10]

The Carboniferous was a time of active mountain-building as the supercontinent Pangaea came together. The southern continents remained tied together in the supercontinent Gondwana, which collided with North America–Europe (Laurussia) along the present line of eastern North America. This continental collision resulted in the Hercynian orogeny in Europe, and the Alleghenian orogeny in North America; it also extended the newly uplifted Appalachians southwestward as the Ouachita Mountains. [10] In the same time frame, much of present eastern Eurasian plate welded itself to Europe along the line of the Ural Mountains. Most of the Mesozoic supercontinent of Pangea was now assembled, although North China (which would collide in the Latest Carboniferous), and South China continents were still separated from Laurasia. The Late Carboniferous Pangaea was shaped like an "O."

There were two major oceans in the Carboniferous—Panthalassa and Paleo-Tethys, which was inside the "O" in the Carboniferous Pangaea. Other minor oceans were shrinking and eventually closed - Rheic Ocean (closed by the assembly of South and North America), the small, shallow Ural Ocean (which was closed by the collision of Baltica and Siberia continents, creating the Ural Mountains) and Proto-Tethys Ocean (closed by North China collision with Siberia/Kazakhstania).

Climate

Average global temperatures in the Early Carboniferous Period were high: approximately 20 °C (68 °F). However, cooling during the Middle Carboniferous reduced average global temperatures to about 12 °C (54 °F). Lack of growth rings of fossilized trees suggest a lack of seasons of a tropical climate. Glaciations in Gondwana, triggered by Gondwana's southward movement, continued into the Permian and because of the lack of clear markers and breaks, the deposits of this glacial period are often referred to as Permo-Carboniferous in age.

The cooling and drying of the climate led to the Carboniferous Rainforest Collapse (CRC) during the late Carboniferous. Tropical rainforests fragmented and then were eventually devastated by climate change. [8]

Rocks and coal

Lower Carboniferous marble in Big Cottonwood Canyon, Wasatch Mountains, Utah. MississippianMarbleUT.JPG
Lower Carboniferous marble in Big Cottonwood Canyon, Wasatch Mountains, Utah.

Carboniferous rocks in Europe and eastern North America largely consist of a repeated sequence of limestone, sandstone, shale and coal beds. [11] In North America, the early Carboniferous is largely marine limestone, which accounts for the division of the Carboniferous into two periods in North American schemes. The Carboniferous coal beds provided much of the fuel for power generation during the Industrial Revolution and are still of great economic importance.

The large coal deposits of the Carboniferous may owe their existence primarily to two factors. The first of these is the appearance of wood tissue and bark-bearing trees. The evolution of the wood fiber lignin and the bark-sealing, waxy substance suberin variously opposed decay organisms so effectively that dead materials accumulated long enough to fossilise on a large scale. The second factor was the lower sea levels that occurred during the Carboniferous as compared to the preceding Devonian period. This promoted the development of extensive lowland swamps and forests in North America and Europe. Based on a genetic analysis of mushroom fungi, it was proposed that large quantities of wood were buried during this period because animals and decomposing bacteria and fungi had not yet evolved enzymes that could effectively digest the resistant phenolic lignin polymers and waxy suberin polymers. They suggest that fungi that could break those substances down effectively only became dominant towards the end of the period, making subsequent coal formation much rarer. [12]

The Carboniferous trees made extensive use of lignin. They had bark to wood ratios of 8 to 1, and even as high as 20 to 1. This compares to modern values less than 1 to 4. This bark, which must have been used as support as well as protection, probably had 38% to 58% lignin. Lignin is insoluble, too large to pass through cell walls, too heterogeneous for specific enzymes, and toxic, so that few organisms other than Basidiomycetes fungi can degrade it. To oxidize it requires an atmosphere of greater than 5% oxygen, or compounds such as peroxides. It can linger in soil for thousands of years and its toxic breakdown products inhibit decay of other substances. [13] One possible reason for its high percentages in plants at that time was to provide protection from insects in a world containing very effective insect herbivores (but nothing remotely as effective as modern plant eating insects) and probably many fewer protective toxins produced naturally by plants than exist today. As a result, undegraded carbon built up, resulting in the extensive burial of biologically fixed carbon, leading to an increase in oxygen levels in the atmosphere; estimates place the peak oxygen content as high as 35%, as compared to 21% today. [14] This oxygen level may have increased wildfire activity. It also may have promoted gigantism of insects and amphibians — creatures that have been constrained in size by respiratory systems that are limited in their physiological ability to transport and distribute oxygen at the lower atmospheric concentrations that have since been available. [15]

In eastern North America, marine beds are more common in the older part of the period than the later part and are almost entirely absent by the late Carboniferous. More diverse geology existed elsewhere, of course. Marine life is especially rich in crinoids and other echinoderms. Brachiopods were abundant. Trilobites became quite uncommon. On land, large and diverse plant populations existed. Land vertebrates included large amphibians.

Life

Plants

Etching depicting some of the most significant plants of the Carboniferous. Meyers b15 s0272b.jpg
Etching depicting some of the most significant plants of the Carboniferous.

Early Carboniferous land plants, some of which were preserved in coal balls, were very similar to those of the preceding Late Devonian, but new groups also appeared at this time.

Ancient in situ lycopsid, probably Sigillaria, with attached stigmarian roots. Lycopsid joggins mcr1.JPG
Ancient in situ lycopsid, probably Sigillaria , with attached stigmarian roots.
Base of a lycopsid showing connection with bifurcating stigmarian roots. Lycopsid mcr2.jpg
Base of a lycopsid showing connection with bifurcating stigmarian roots.

The main Early Carboniferous plants were the Equisetales (horse-tails), Sphenophyllales (scrambling plants), Lycopodiales (club mosses), Lepidodendrales (scale trees), Filicales (ferns), Medullosales (informally included in the "seed ferns", an artificial assemblage of a number of early gymnosperm groups) and the Cordaitales. These continued to dominate throughout the period, but during late Carboniferous, several other groups, Cycadophyta (cycads), the Callistophytales (another group of "seed ferns"), and the Voltziales (related to and sometimes included under the conifers), appeared.

The Carboniferous lycophytes of the order Lepidodendrales, which are cousins (but not ancestors) of the tiny club-moss of today, were huge trees with trunks 30 meters high and up to 1.5 meters in diameter. These included Lepidodendron (with its cone called Lepidostrobus), Anabathra , Lepidophloios and Sigillaria . The roots of several of these forms are known as Stigmaria. Unlike present-day trees, their secondary growth took place in the cortex, which also provided stability, instead of the xylem. [16] The Cladoxylopsids were large trees, that were ancestors of ferns, first arising in the Carboniferous. [17]

The fronds of some Carboniferous ferns are almost identical with those of living species. Probably many species were epiphytic. Fossil ferns and "seed ferns" include Pecopteris , Cyclopteris , Neuropteris , Alethopteris , and Sphenopteris ; Megaphyton and Caulopteris were tree ferns.

The Equisetales included the common giant form Calamites , with a trunk diameter of 30 to 60 cm (24 in) and a height of up to 20 m (66 ft). Sphenophyllum was a slender climbing plant with whorls of leaves, which was probably related both to the calamites and the lycopods.

Cordaites , a tall plant (6 to over 30 meters) with strap-like leaves, was related to the cycads and conifers; the catkin-like reproductive organs, which bore ovules/seeds, is called Cardiocarpus . These plants were thought to live in swamps. True coniferous trees ( Walchia , of the order Voltziales) appear later in the Carboniferous, and preferred higher drier ground.

Marine invertebrates

In the oceans the marine invertebrate groups are the Foraminifera, corals, Bryozoa, Ostracoda, brachiopods, ammonoids, hederelloids, microconchids and echinoderms (especially crinoids). For the first time foraminifera take a prominent part in the marine faunas. The large spindle-shaped genus Fusulina and its relatives were abundant in what is now Russia, China, Japan, North America; other important genera include Valvulina, Endothyra, Archaediscus, and Saccammina (the latter common in Britain and Belgium). Some Carboniferous genera are still extant.

The microscopic shells of radiolarians are found in cherts of this age in the Culm of Devon and Cornwall, and in Russia, Germany and elsewhere. Sponges are known from spicules and anchor ropes, and include various forms such as the Calcispongea Cotyliscus and Girtycoelia, the demosponge Chaetetes, and the genus of unusual colonial glass sponges Titusvillia .

Both reef-building and solitary corals diversify and flourish; these include both rugose (for example, Caninia , Corwenia, Neozaphrentis), heterocorals, and tabulate (for example, Chladochonus, Michelinia) forms. Conularids were well represented by Conularia

Bryozoa are abundant in some regions; the fenestellids including Fenestella, Polypora, and Archimedes , so named because it is in the shape of an Archimedean screw. Brachiopods are also abundant; they include productids, some of which (for example, Gigantoproductus ) reached very large (for brachiopods) size and had very thick shells, while others like Chonetes were more conservative in form. Athyridids, spiriferids, rhynchonellids, and terebratulids are also very common. Inarticulate forms include Discina and Crania . Some species and genera had a very wide distribution with only minor variations.

Annelids such as Serpulites are common fossils in some horizons. Among the mollusca, the bivalves continue to increase in numbers and importance. Typical genera include Aviculopecten , Posidonomya , Nucula , Carbonicola , Edmondia, and Modiola. Gastropods are also numerous, including the genera Murchisonia, Euomphalus , Naticopsis. Nautiloid cephalopods are represented by tightly coiled nautilids, with straight-shelled and curved-shelled forms becoming increasingly rare. Goniatite ammonoids are common.

Trilobites are rarer than in previous periods, on a steady trend towards extinction, represented only by the proetid group. Ostracoda, a class of crustaceans, were abundant as representatives of the meiobenthos; genera included Amphissites, Bairdia, Beyrichiopsis, Cavellina, Coryellina, Cribroconcha, Hollinella, Kirkbya, Knoxiella, and Libumella.

Amongst the echinoderms, the crinoids were the most numerous. Dense submarine thickets of long-stemmed crinoids appear to have flourished in shallow seas, and their remains were consolidated into thick beds of rock. Prominent genera include Cyathocrinus, Woodocrinus, and Actinocrinus. Echinoids such as Archaeocidaris and Palaeechinus were also present. The blastoids, which included the Pentreinitidae and Codasteridae and superficially resembled crinoids in the possession of long stalks attached to the seabed, attain their maximum development at this time.

Freshwater and lagoonal invertebrates

Freshwater Carboniferous invertebrates include various bivalve molluscs that lived in brackish or fresh water, such as Anthraconaia , Naiadites , and Carbonicola ; diverse crustaceans such as Candona , Carbonita , Darwinula , Estheria , Acanthocaris , Dithyrocaris , and Anthrapalaemon .

The upper Carboniferous giant spider-like eurypterid Megarachne grew to legspans of 50 cm (20 in). Megarachne BW.jpg
The upper Carboniferous giant spider-like eurypterid Megarachne grew to legspans of 50 cm (20 in).

The eurypterids were also diverse, and are represented by such genera as Adelophthalmus , Megarachne (originally misinterpreted as a giant spider, hence its name) and the specialised very large Hibbertopterus . Many of these were amphibious.

Frequently a temporary return of marine conditions resulted in marine or brackish water genera such as Lingula , Orbiculoidea, and Productus being found in the thin beds known as marine bands.

Terrestrial invertebrates

Fossil remains of air-breathing insects, [18] myriapods and arachnids [19] are known from the late Carboniferous, but so far not from the early Carboniferous. [6] The first true priapulids appeared during this period. Their diversity when they do appear, however, shows that these arthropods were both well developed and numerous. Their large size can be attributed to the moistness of the environment (mostly swampy fern forests) and the fact that the oxygen concentration in the Earth's atmosphere in the Carboniferous was much higher than today. [20] This required less effort for respiration and allowed arthropods to grow larger with the up to 2.6-meter-long (8.5 ft) millipede-like Arthropleura being the largest-known land invertebrate of all time. Among the insect groups are the huge predatory Protodonata (griffinflies), among which was Meganeura , a giant dragonfly-like insect and with a wingspan of ca. 75 cm (30 in)—the largest flying insect ever to roam the planet. Further groups are the Syntonopterodea (relatives of present-day mayflies), the abundant and often large sap-sucking Palaeodictyopteroidea, the diverse herbivorous Protorthoptera, and numerous basal Dictyoptera (ancestors of cockroaches). [18] Many insects have been obtained from the coalfields of Saarbrücken and Commentry, and from the hollow trunks of fossil trees in Nova Scotia. Some British coalfields have yielded good specimens: Archaeoptitus , from the Derbyshire coalfield, had a spread of wing extending to more than 35 cm (14 in); some specimens ( Brodia ) still exhibit traces of brilliant wing colors. In the Nova Scotian tree trunks land snails ( Archaeozonites , Dendropupa ) have been found.

Fish

Many fish inhabited the Carboniferous seas; predominantly Elasmobranchs (sharks and their relatives). These included some, like Psammodus , with crushing pavement-like teeth adapted for grinding the shells of brachiopods, crustaceans, and other marine organisms. Other sharks had piercing teeth, such as the Symmoriida; some, the petalodonts, had peculiar cycloid cutting teeth. Most of the sharks were marine, but the Xenacanthida invaded fresh waters of the coal swamps. Among the bony fish, the Palaeonisciformes found in coastal waters also appear to have migrated to rivers. Sarcopterygian fish were also prominent, and one group, the Rhizodonts, reached very large size.

Most species of Carboniferous marine fish have been described largely from teeth, fin spines and dermal ossicles, with smaller freshwater fish preserved whole.

Freshwater fish were abundant, and include the genera Ctenodus , Uronemus , Acanthodes , Cheirodus , and Gyracanthus .

Sharks (especially the Stethacanthids) underwent a major evolutionary radiation during the Carboniferous. [21] It is believed that this evolutionary radiation occurred because the decline of the placoderms at the end of the Devonian period caused many environmental niches to become unoccupied and allowed new organisms to evolve and fill these niches. [21] As a result of the evolutionary radiation Carboniferous sharks assumed a wide variety of bizarre shapes including Stethacanthus which possessed a flat brush-like dorsal fin with a patch of denticles on its top. [21] Stethacanthus 's unusual fin may have been used in mating rituals. [21]

Tetrapods

Carboniferous amphibians were diverse and common by the middle of the period, more so than they are today; some were as long as 6 meters, and those fully terrestrial as adults had scaly skin. [22] They included a number of basal tetrapod groups classified in early books under the Labyrinthodontia. These had long bodies, a head covered with bony plates and generally weak or undeveloped limbs. The largest were over 2 meters long. They were accompanied by an assemblage of smaller amphibians included under the Lepospondyli, often only about 15 cm (6 in) long. Some Carboniferous amphibians were aquatic and lived in rivers ( Loxomma , Eogyrinus , Proterogyrinus ); others may have been semi-aquatic ( Ophiderpeton , Amphibamus , Hyloplesion ) or terrestrial ( Dendrerpeton , Tuditanus , Anthracosaurus ).

The Carboniferous Rainforest Collapse slowed the evolution of amphibians who could not survive as well in the cooler, drier conditions. Reptiles, however, prospered due to specific key adaptations. [8] One of the greatest evolutionary innovations of the Carboniferous was the amniote egg, which allowed the laying of eggs in a dry environment, allowing for the further exploitation of the land by certain tetrapods. These included the earliest sauropsid reptiles ( Hylonomus ), and the earliest known synapsid ( Archaeothyris ). These small lizard-like animals quickly gave rise to many descendants, including reptiles, birds, and mammals.

Reptiles underwent a major evolutionary radiation in response to the drier climate that preceded the rainforest collapse. [8] [23] By the end of the Carboniferous period, amniotes had already diversified into a number of groups, including protorothyridids, captorhinids, araeoscelids, and several families of pelycosaurs.

Fungi

Because plants and animals were growing in size and abundance in this time (for example, Lepidodendron ), land fungi diversified further. Marine fungi still occupied the oceans. All modern classes of fungi were present in the Late Carboniferous (Pennsylvanian Epoch). [24]

Extinction events

Romer's gap

The first 15 million years of the Carboniferous had very limited terrestrial fossils. This gap in the fossil record is called Romer's gap after the American palaentologist Alfred Romer. While it has long been debated whether the gap is a result of fossilisation or relates to an actual event, recent work indicates the gap period saw a drop in atmospheric oxygen levels, indicating some sort of ecological collapse. [25] The gap saw the demise of the Devonian fish-like ichthyostegalian labyrinthodonts, and the rise of the more advanced temnospondyl and reptiliomorphan amphibians that so typify the Carboniferous terrestrial vertebrate fauna.

Carboniferous rainforest collapse

Before the end of the Carboniferous Period, an extinction event occurred. On land this event is referred to as the Carboniferous Rainforest Collapse (CRC). [8] Vast tropical rainforests collapsed suddenly as the climate changed from hot and humid to cool and arid. This was likely caused by intense glaciation and a drop in sea levels. [26]

The new climatic conditions were not favorable to the growth of rainforest and the animals within them. Rainforests shrank into isolated islands, surrounded by seasonally dry habitats. Towering lycopsid forests with a heterogeneous mixture of vegetation were replaced by much less diverse tree-fern dominated flora.

Amphibians, the dominant vertebrates at the time, fared poorly through this event with large losses in biodiversity; reptiles continued to diversify due to key adaptations that let them survive in the drier habitat, specifically the hard-shelled egg and scales, both of which retain water better than their amphibian counterparts. [8]

See also

Related Research Articles

Devonian Fourth period of the Paleozoic Era 419-359 million years ago

The Devonian is a geologic period and system of the Paleozoic, spanning 60 million years from the end of the Silurian, 419.2 million years ago (Mya), to the beginning of the Carboniferous, 358.9 Mya. It is named after Devon, England, where rocks from this period were first studied.

Pennsylvanian (geology) Second subperiod of the Carboniferous

The Pennsylvanian is, in the ICS geologic timescale, the younger of two subperiods of the Carboniferous Period. It lasted from roughly

The PaleozoicEra is the earliest of three geologic eras of the Phanerozoic Eon. It is the longest of the Phanerozoic eras, lasting from 541 to 251.902 million years ago, and is subdivided into six geologic periods : the Cambrian, Ordovician, Silurian, Devonian, Carboniferous, and Permian. The Paleozoic comes after the Neoproterozoic Era of the Proterozoic Eon and is followed by the Mesozoic Era.

Romer's gap is an example of an apparent gap in the tetrapod fossil record used in the study of evolutionary biology. Such gaps represent periods from which excavators have not yet found relevant fossils. Romer's gap is named after paleontologist Alfred Romer, who first recognised it. Recent discoveries in Scotland are beginning to close this gap in palaeontological knowledge.

Coal forest Wetlands that covered much of the Earths tropical land areas during the late Carboniferous and Permian times

Coal forests were the vast swathes of wetlands that covered much of the Earth's tropical land areas during the late Carboniferous (Pennsylvanian) and Permian times. As vegetable matter from these forests decayed, enormous deposits of peat accumulated, which later changed into coal.

This article attempts to place key plant innovations in a geological context. It concerns itself only with novel adaptations and events that had a major ecological significance, not those that are of solely anthropological interest. The timeline displays a graphical representation of the adaptations; the text attempts to explain the nature and robustness of the evidence.

Carboniferous rainforest collapse Extinction event at the end of the Moscovian in the Carboniferous

The Carboniferous rainforest collapse (CRC) was a minor extinction event that occurred around 305 million years ago in the Carboniferous period. It altered the vast coal forests that covered the equatorial region of Euramerica. This event may have fragmented the forests into isolated 'islands', which in turn caused dwarfism and, shortly after, extinction of many plant and animal species. Following the event, coal-forming tropical forests continued in large areas of the Earth, but their extent and composition were changed.

Paleontology in Michigan

Paleontology in Michigan refers to paleontological research occurring within or conducted by people from the U.S. state of Michigan. During the Precambrian, the Upper Peninsula was home to filamentous algae. The remains it left behind are among the oldest known fossils in the world. During the early part of the Paleozoic Michigan was covered by a shallow tropical sea which was home to a rich invertebrate fauna including brachiopods, corals, crinoids, and trilobites. Primitive armored fishes and sharks were also present. Swamps covered the state during the Carboniferous. There are little to no sedimentary deposits in the state for an interval spanning from the Permian to the end of the Neogene. Deposition resumed as glaciers transformed the state's landscape during the Pleistocene. Michigan was home to large mammals like mammoths and mastodons at that time. The Holocene American mastodon, Mammut americanum, is the Michigan state fossil. The Petoskey stone, which is made of fossil coral, is the state stone of Michigan.

Paleontology in West Virginia

Paleontology in West Virginia refers to paleontological research occurring within or conducted by people from the U.S. state of West Virginia. West Virginia's fossil record begins in the Cambrian. From that time through the rest of the early Paleozoic, the state was at least partially submerged under a shallow sea. The Paleozoic seas of West Virginia were home to creatures like corals, eurypterids, graptolites, nautiloids, and trilobites at varying times. During the Carboniferous period, the sea was replaced by lushly vegetated coastal swamps. West Virginia is an excellent source of fossil plants due to these deposits. These swamps were home to amphibians. A gap in the local rock record spans from the Permian to the end of the Cenozoic. West Virginia was never the site of glacial activity during the Ice Age, but the state was home to creatures like mammoths, mastodons, and giant ground sloths. One local ground sloth, Megalonyx jeffersonii, was subject to the scholarly investigations of Thomas Jefferson, who misinterpreted the large-clawed remains as belonging to a lion-like predator. In 2008, this species was designated the West Virginia state fossil.

Paleontology in Ohio

Paleontology in Ohio refers to paleontological research occurring within or conducted by people from the U.S. state of Ohio. Ohio is well known for having a great quantity and diversity of fossils preserved in its rocks. The state's fossil record begins early in the Paleozoic era, during the Cambrian period. Ohio was generally covered by seawater from that time on through the rest of the early Paleozoic. Local invertebrates included brachiopods, cephalopods, coral, graptolites, and trilobites. Vertebrates included bony fishes and sharks. The first land plants in the state grew during the Devonian. During the Carboniferous, Ohio became a more terrestrial environment with an increased diversity of plants that formed expansive swampy deltas. Amphibians and reptiles began to inhabit the state at this time, and remained present into the ensuing Permian. A gap in the local rock record spans from this point until the start of the Pleistocene. During the Ice Age, Ohio was home to giant beavers, humans, mammoths, and mastodons. Paleo-Indians collected fossils that were later incorporated into their mounds. Ohio has been the birthplace of many world famous paleontologists, like Charles Schuchert. Many significant fossils curated by museums in Europe and the United States were found in Ohio. Major local fossil discoveries include the 1965 discovery of more than 50,000 Devonian fish fossils in Cuyahoga County. The Ordovician trilobite Isotelus maximus is the Ohio state fossil.

Paleontology in Indiana

Paleontology in Indiana refers to paleontological research occurring within or conducted by people from the U.S. state of Indiana. Indiana's fossil record stretches all the way back to the Precambrian, when the state was inhabited by microbes. More complex organisms came to inhabit the state during the early Paleozoic era. At that time the state was covered by a warm shallow sea that would come to be inhabited by creatures like brachiopods, bryozoans, cephalopods, crinoids, and trilobites. During the Silurian period the state was home to significant reef systems. Indiana became a more terrestrial environment during the Carboniferous, as an expansive river system formed richly vegetated deltas where amphibians lived. There is a gap in the local rock record from the Permian through the Mesozoic. Likewise, little is known about the early to middle Cenozoic era. During the Ice Age however, the state was subject to glacial activity, and home to creatures like short-faced bears, camels, mammoths, and mastodons. After humans came to inhabit the state, Native Americans interpreted the fossil proboscidean remains preserved near Devil's Lake as the bones of water monsters. After the advent of formal scientific investigation one paleontological survey determined that the state was home to nearly 150 different kinds of prehistoric plants.

Paleontology in Illinois

Paleontology in Illinois refers to paleontological research occurring within or conducted by people from the U.S. state of Illinois. Scientists have found that Illinois was covered by a sea during the Paleozoic Era. Over time this sea was inhabited by animals including brachiopods, clams, corals, crinoids, sea snails, sponges, and trilobites.

Paleontology in Virginia

Paleontology in Virginia refers to paleontological research occurring within or conducted by people from the U.S. state of Virginia. The geologic column in Virginia spans from the Cambrian to the Quaternary. During the early part of the Paleozoic, Virginia was covered by a warm shallow sea. This sea would come to be inhabited by creatures like brachiopods, bryozoans, corals, and nautiloids. The state was briefly out of the sea during the Ordovician, but by the Silurian it was once again submerged. During this second period of inundation the state was home to brachiopods, trilobites and entire reef systems. During the mid-to-late Carboniferous the state gradually became a swampy environment.

Paleontology in Tennessee

Paleontology in Tennessee refers to paleontological research occurring within or conducted by people from the U.S. state of Tennessee. During the early part of the Paleozoic era, Tennessee was covered by a warm, shallow sea. This sea was home to brachiopods, bryozoans, cephalopods, corals, and trilobites. Tennessee is one of the best sources of Early Devonian fossils in North America. During the mid-to-late Carboniferous, the state became a swampy environment, home to a rich variety of plants including ferns and scale trees. A gap in the local rock record spans from the Permian through the Jurassic. During the Cretaceous, the western part of the state was submerged by seawater. The local waters were home to more fossil gastropods than are known from anywhere else in the world. Mosasaurs and sea turtles also inhabited these waters. On land the state was home to dinosaurs. Western Tennessee was still under the sea during the early part of the Cenozoic. Terrestrial portions of the state were swampy. Climate cooled until the Ice Age, when the state was home to Camelops, horses, mammoths, mastodons, and giant ground sloths. The local Yuchi people told myths of giant lizard monsters that may have been inspired by fossils either local or encountered elsewhere. In 1920, after local fossils became a subject of formal scientific study, a significant discovery of a variety of Pleistocene creatures was made near Nashville. The Cretaceous bivalve Pterotrigonia thoracica is the Tennessee state fossil.

Paleontology in Alabama

Paleontology in Alabama refers to paleontological research occurring within or conducted by people from the U.S. state of Alabama. Pennsylvanian plant fossils are common, especially around coal mines. During the early Paleozoic, Alabama was at least partially covered by a sea that would end up being home to creatures including brachiopods, bryozoans, corals, and graptolites. During the Devonian the local seas deepened and local wildlife became scarce due to their decreasing oxygen levels.

Paleontology in Texas

Paleontology in Texas refers to paleontological research occurring within or conducted by people from the U.S. state of Texas. Author Marian Murray has remarked that "Texas is as big for fossils as it is for everything else." Some of the most important fossil finds in United States history have come from Texas. Fossils can be found throughout most of the state. The fossil record of Texas spans almost the entire geologic column from Precambrian to Pleistocene. Shark teeth are probably the state's most common fossil. During the early Paleozoic era Texas was covered by a sea that would later be home to creatures like brachiopods, cephalopods, graptolites, and trilobites. Little is known about the state's Devonian and early Carboniferous life. However, evidence indicates that during the late Carboniferous the state was home to marine life, land plants and early reptiles. During the Permian, the seas largely shrank away, but nevertheless coral reefs formed in the state. The rest of Texas was a coastal plain inhabited by early relatives of mammals like Dimetrodon and Edaphosaurus. During the Triassic, a great river system formed in the state that was inhabited by crocodile-like phytosaurs. Little is known about Jurassic Texas, but there are fossil aquatic invertebrates of this age like ammonites in the state. During the Early Cretaceous local large sauropods and theropods left a great abundance of footprints. Later in the Cretaceous, the state was covered by the Western Interior Seaway and home to creatures like mosasaurs, plesiosaurs, and few icthyosaurs. Early Cenozoic Texas still contained areas covered in seawater where invertebrates and sharks lived. On land the state would come to be home to creatures like glyptodonts, mammoths, mastodons, saber-toothed cats, giant ground sloths, titanotheres, uintatheres, and dire wolves. Archaeological evidence suggests that local Native Americans knew about local fossils. Formally trained scientists were already investigating the state's fossils by the late 1800s. In 1938, a major dinosaur footprint find occurred near Glen Rose. Pleurocoelus was the Texas state dinosaur from 1997 to 2009, when it was replaced by Paluxysaurus jonesi after the Texan fossils once referred to the former species were reclassified to a new genus.

Paleontology in New Mexico

Paleontology in New Mexico refers to paleontological research occurring within or conducted by people from the U.S. state of New Mexico. The fossil record of New Mexico is exceptionally complete and spans almost the entire stratigraphic column. More than 3,300 different kinds of fossil organisms have been found in the state. Of these more than 700 of these were new to science and more than 100 of those were type species for new genera. During the early Paleozoic, southern and western New Mexico were submerged by a warm shallow sea that would come to be home to creatures including brachiopods, bryozoans, cartilaginous fishes, corals, graptolites, nautiloids, placoderms, and trilobites. During the Ordovician the state was home to algal reefs up to 300 feet high. During the Carboniferous, a richly vegetated island chain emerged from the local sea. Coral reefs formed in the state's seas while terrestrial regions of the state dried and were home to sand dunes. Local wildlife included Edaphosaurus, Ophiacodon, and Sphenacodon.

Prehistory of the United States US History from the formation of the Earth to history in written form

The prehistory of the United States comprises the occurrences within regions now part of the United States of America during the interval of time spanning from the formation of the Earth to the documentation of local history in written form. At the start of the Paleozoic era, what is now "North" America was actually in the southern hemisphere. Marine life flourished in the country's many seas, although terrestrial life had not yet evolved. During the latter part of the Paleozoic, seas were largely replaced by swamps home to amphibians and early reptiles. When the continents had assembled into Pangaea drier conditions prevailed. The evolutionary precursors to mammals dominated the country until a mass extinction event ended their reign.

The geology of Ohio formed beginning more than one billion years ago in the Proterozoic eon of the Precambrian. The igneous and metamorphic crystalline basement rock is poorly understood except through deep boreholes and does not outcrop at the surface. The basement rock is divided between the Grenville Province and Superior Province. When the Grenville Province crust collided with Proto-North America, it launched the Grenville orogeny, a major mountain building event. The Grenville mountains eroded, filling in rift basins and Ohio was flooded and periodically exposed as dry land throughout the Paleozoic. In addition to marine carbonates such as limestone and dolomite, large deposits of shale and sandstone formed as subsequent mountain building events such as the Taconic orogeny and Acadian orogeny led to additional sediment deposition. Ohio transitioned to dryland conditions in the Pennsylvanian, forming large coal swamps and the region has been dryland ever since. Until the Pleistocene glaciations erased these features, the landscape was cut with deep stream valleys, which scoured away hundreds of meters of rock leaving little trace of geologic history in the Mesozoic and Cenozoic.

The geology of Kentucky formed beginning more than one billion years ago, in the Proterozoic eon of the Precambrian. The oldest igneous and metamorphic crystalline basement rock is part of the Grenville Province, a small continent that collided with the early North American continent. The beginning of the Paleozoic is poorly attested and the oldest rocks in Kentucky, outcropping at the surface, are from the Ordovician. Throughout the Paleozoic, shallow seas covered the area, depositing marine sedimentary rocks such as limestone, dolomite and shale, as well as large numbers of fossils. By the Mississippian and the Pennsylvanian, massive coal swamps formed and generated the two large coal fields and the oil and gas which have played an important role in the state's economy. With interludes of terrestrial conditions, shallow marine conditions persisted throughout the Mesozoic and well into the Cenozoic. Unlike neighboring states, Kentucky was not significantly impacted by the Pleistocene glaciations. The state has extensive natural resources, including coal, oil and gas, sand, clay, fluorspar, limestone, dolomite and gravel. Kentucky is unique as the first state to be fully geologically mapped.

References

  1. Haq, B. U.; Schutter, SR (2008). "A Chronology of Paleozoic Sea-Level Changes". Science. 322 (5898): 64–68. Bibcode:2008Sci...322...64H. doi:10.1126/science.1161648. PMID   18832639.
  2. Wells, John (3 April 2008). Longman Pronunciation Dictionary (3rd ed.). Pearson Longman. ISBN   978-1-4058-8118-0.
  3. Conybeare & Phillips 1822, p. 323: "Book III. Medial or Carboniferous Order.".
  4. Cossey et al. 2004, p. 3.
  5. "The Carboniferous Period". www.ucmp.berkeley.edu. Archived from the original on 2012-02-10.
  6. 1 2 Garwood & Edgecombe 2011.
  7. 1 2 Beerling 2007, p. 47.
  8. 1 2 3 4 5 6 Sahney, S.; Benton, M.J. & Falcon-Lang, H.J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica". Geology. 38 (12): 1079–1082. Bibcode:2010Geo....38.1079S. doi:10.1130/G31182.1.
  9. Menning et al. 2006.
  10. 1 2 3 4 5 6 Stanley 1999.
  11. Stanley 1999, p. 426.
  12. Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R. A.; Henrissat, B.; Martinez, A. T.; et al. (28 June 2012). "The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes". Science. 336 (6089): 1715–1719. Bibcode:2012Sci...336.1715F. doi:10.1126/science.1221748. hdl: 10261/60626 . PMID   22745431.
    Biello, David (28 June 2012). "White Rot Fungi Slowed Coal Formation". Scientific American. Archived from the original on 30 June 2012. Retrieved 8 March 2013.
  13. Robinson 1990, p. 608.
  14. "Ancient Animals Got a Rise out of Oxygen". highbeam.com. 13 May 1995. Archived from the original on 3 January 2013. Retrieved 1 May 2018.
  15. Dudley 1998.
  16. "A History of Palaeozoic Forests - Part 2 The Carboniferous coal swamp forests". Forschungsstelle für Paläobotanik. Westfälische Wilhelms-Universität Münster. Archived from the original on 2012-09-20.
  17. Hogan, C. Michael (2010). "Fern". Encyclopedia of Earth. Washington, DC: National council for Science and the Environment. Archived from the original on November 9, 2011.
  18. 1 2 Garwood & Sutton 2010.
  19. Garwood, Dunlop & Sutton 2009.
  20. Verberk, Wilco C.E.P.; Bilton, David T. (July 27, 2011). "Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism?". PLOS One. 6 (7): e22610. Bibcode:2011PLoSO...622610V. doi:10.1371/journal.pone.0022610. PMC   3144910 . PMID   21818347.
  21. 1 2 3 4 Martin, R. Aidan. "A Golden Age of Sharks". Biology of Sharks and Rays | ReefQuest Centre for Shark Research. Archived from the original on 2008-05-22. Retrieved 2008-06-23.
  22. Stanley 1999, pp. 411-412.
  23. Kazlev, M. Alan (1998). "The Carboniferous Period of the Paleozoic Era: 299 to 359 million years ago". Palaeos.org. Archived from the original on 2008-06-21. Retrieved 2008-06-23.
  24. Blackwell, Meredith; Vilgalys, Rytas; James, Timothy Y.; Taylor, John W. (2008). "Fungi. Eumycota: mushrooms, sac fungi, yeast, molds, rusts, smuts, etc". Archived from the original on 2008-09-24. Retrieved 2008-06-25.
  25. Ward, P.; Labandeira, Conrad; Laurin, Michel; Berner, Robert A. (November 7, 2006). "Confirmation of Romer's Gap is a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization" (PDF). Proceedings of the National Academy of Sciences . 103 (45): 16818–16822. Bibcode:2006PNAS..10316818W. doi:10.1073/pnas.0607824103. PMC   1636538 . PMID   17065318.
  26. Heckel, P.H. (2008). "Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets". Resolving the Late Paleozoic Ice Age in Time and Space:Geological Society of America Special Paper. 441: 275–289. doi:10.1130/2008.2441(19). ISBN   978-0-8137-2441-6.

Sources

Wikisource-logo.svg This article incorporates text from a publication now in the public domain : Chisholm, Hugh, ed. (1911). "Carboniferous System". Encyclopædia Britannica (11th ed.). Cambridge University Press.