Cardiobacterium hominis

Last updated

Cardiobacterium hominis
Cardiobacterium hominis.jpg
Cardiobacterium hominis on blood agar plate
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Gammaproteobacteria
Order: Cardiobacteriales
Family: Cardiobacteriaceae
Species:C. hominis

Cardiobacterium hominis is a Gram-negative bacillus (rod-shaped) bacterium commonly grouped with other bacteria into the HACEK group. It is one of several bacteria that is normally present in the mouth and upper part of the respiratory tract such as nose and throat. However, it may also rarely cause endocarditis, an infection of the heart valves. [1]

Gram-negative bacteria group of bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation

Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the gram-staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wall sandwiched between an inner cytoplasmic cell membrane and a bacterial outer membrane.

Bacillus (shape) rod-shaped bacterium (not to be confused with the taxon Bacilli)

A bacillus or bacilliform bacterium is a rod-shaped bacterium or archaeon. Bacilli are found in many different taxonomic groups of bacteria. However, the name Bacillus, capitalized and italicized, refers to a specific genus of bacteria. The name Bacilli, capitalized but not italicized, can also refer to a less specific taxonomic group of bacteria that includes two orders, one of which contains the genus Bacillus. When the word is formatted with lowercase and not italicized, 'bacillus', it will most likely be referring to shape and not to the genus at all. Bacilliform bacteria are also often simply called rods when the bacteriologic context is clear. Sea Bacilli usually divide in the same plane and are solitary, but can combine to form diplobacilli, streptobacilli, and palisades.

Respiratory tract Organs involved in transmission of air to and from the point where gases diffuse into tissue

In humans, the respiratory tract is the part of the anatomy of the respiratory system involved with the process of respiration. Air is breathed in through the nose or the mouth. In the nasal cavity, a layer of mucous membrane acts as a filter and traps pollutants and other harmful substances found in the air. Next, air moves into the pharynx, a passage that contains the intersection between the esophagus and the larynx. The opening of the larynx has a special flap of cartilage, the epiglottis, that opens to allow air to pass through but closes to prevent food from moving into the airway.



C. hominis is a catalase-negative, oxidase-positive, indole-producing, Gram-negative rod. [2] Its morphology has classically been described as highly pleomorphic and irregularly staining, although homogeneous bacilli with uniform shapes may be seen with the addition of yeast extract. [2]

Catalase protein-coding gene in the species Homo sapiens

Catalase is a common enzyme found in nearly all living organisms exposed to oxygen. It catalyzes the decomposition of hydrogen peroxide to water and oxygen. It is a very important enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). Likewise, catalase has one of the highest turnover numbers of all enzymes; one catalase molecule can convert millions of hydrogen peroxide molecules to water and oxygen each second.

An oxidase is an enzyme that catalyzes an oxidation-reduction reaction, especially one involving dioxygen (O2) as the electron acceptor. In reactions involving donation of a hydrogen atom, oxygen is reduced to water (H2O) or hydrogen peroxide (H2O2). Some oxidation reactions, such as those involving monoamine oxidase or xanthine oxidase, typically do not involve free molecular oxygen.

Indole chemical compound

Indole is an aromatic heterocyclic organic compound with formula C8H7N. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is widely distributed in the natural environment and can be produced by a variety of bacteria. As an intercellular signal molecule, indole regulates various aspects of bacterial physiology, including spore formation, plasmid stability, resistance to drugs, biofilm formation, and virulence. The amino acid tryptophan is an indole derivative and the precursor of the neurotransmitter serotonin.

Antibiotic sensitivity

Historically, C. hominis has been sensitive to penicillin and penicillin derivatives such as ampicillin. [3] However, penicillin-resistant strains, including those that produce beta-lactamases, have been described with increasing frequency. [4] Clinical guidelines thus recommend that C. hominis and other HACEK organisms be presumed to harbor ampicillin resistance and therefore be treated with a third-generation cephalosporin. [3] C. hominis and other HACEK organisms also exhibit in vitro susceptibility to trimethoprim-sulfamethoxazole, fluoroquinolones, and aztreonam. [3] C. hominis is often resistant to erythromycin. [5] Since cefotaxime use may be not appropriate for C. hominis endocarditis, an alternative regimen might include association of co-amoxiclav and gentamicin. [6]

Penicillin group of antibiotics derived from Penicillium fungi

Penicillin is a group of antibiotics which include penicillin G, penicillin V, procaine penicillin, and benzathine penicillin. Penicillin antibiotics were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are still widely used today, though many types of bacteria have developed resistance following extensive use.

Ampicillin chemical compound

Ampicillin is an antibiotic used to prevent and treat a number of bacterial infections, such as respiratory tract infections, urinary tract infections, meningitis, salmonellosis, and endocarditis. It may also be used to prevent group B streptococcal infection in newborns. It is used by mouth, by injection into a muscle, or intravenously. Like all antibiotics, it is not useful for the treatment of viral infections.

Beta-lactamase enzyme

Beta-lactamases are enzymes produced by bacteria that provide multi-resistance to β-lactam antibiotics such as penicillins, cephalosporins, cephamycins, and carbapenems (ertapenem), although carbapenems are relatively resistant to beta-lactamase. Beta-lactamase provides antibiotic resistance by breaking the antibiotics' structure. These antibiotics all have a common element in their molecular structure: a four-atom ring known as a β-lactam. Through hydrolysis, the lactamase enzyme breaks the β-lactam ring open, deactivating the molecule's antibacterial properties.

Related Research Articles

The HACEK organisms are a group of fastidious gram-negative bacteria that are an unusual cause of infective endocarditis, which is an inflammation of the heart due to bacterial infection. HACEK is an abbreviation of the initials of the genera of this group of bacteria: Haemophilus, Aggregatibacter, Cardiobacterium, Eikenella, Kingella. The HACEK organisms are a normal part of the human microbiota, living in the oral-pharyngeal region.

Broad-spectrum antibiotic type of antibiotic

The term broad-spectrum antibiotic can refer to an antibiotic that acts on the two major bacterial groups, gram-positive and gram-negative, or any antibiotic that acts against a wide range of disease-causing bacteria. These medications are used when a bacterial infection is suspected but the group of bacteria is unknown or when infection with multiple groups of bacteria is suspected. This is in contrast to a narrow-spectrum antibiotic, which is effective against only a specific group of bacteria. Although powerful, broad-spectrum antibiotics pose specific risks, particularly the disruption of native, normal bacteria and the development of antimicrobial resistance. An example of a commonly used broad-spectrum antibiotic is ampicillin.

Infective endocarditis endocarditis that is characterized by inflammation of the endocardium caused by infectious agents.

Infective endocarditis is an infection of the inner surface of the heart, usually the valves. Symptoms may include fever, small areas of bleeding into the skin, heart murmur, feeling tired, and low red blood cell count. Complications may include valvular insufficiency, heart failure, stroke, and kidney failure.

Moraxella catarrhalis is a fastidious, nonmotile, Gram-negative, aerobic, oxidase-positive diplococcus that can cause infections of the respiratory system, middle ear, eye, central nervous system, and joints of humans. It causes the infection of the host cell by sticking to the host cell using trimeric autotransporter adhesins.

Carbapenem group of β-lactam antibiotics

Carbapenems are a class of highly effective antibiotic agents commonly used for the treatment of severe or high-risk bacterial infections. This class of antibiotics is usually reserved for known or suspected multidrug-resistant (MDR) bacterial infections. Similar to penicillins and cephalosporins, carbapenems are members of the beta lactam class of antibiotics, which kill bacteria by binding to penicillin-binding proteins, thus inhibiting bacterial cell wall synthesis. However, these agents individually exhibit a broader spectrum of activity compared to most cephalosporins and penicillins. Furthermore, carbapenems are typically unaffected by emerging antibiotic resistance, even to other beta-lactams.

Nafcillin chemical compound

Nafcillin sodium is a narrow-spectrum beta-lactam antibiotic of the penicillin class. As a beta-lactamase-resistant penicillin, it is used to treat infections caused by Gram-positive bacteria, in particular, species of staphylococci that are resistant to other penicillins.

Subacute bacterial endocarditis Human disease

Subacute bacterial endocarditis is a type of endocarditis. Subacute bacterial endocarditis can be considered a form of type III hypersensitivity.

Ampicillin/sulbactam is a combination of the common penicillin-derived antibiotic ampicillin and sulbactam, an inhibitor of bacterial beta-lactamase. Two different forms of the drug exist. The first, developed in 1987 and marketed in the United States under the tradename Unasyn, generic only outside the United States, is an intravenous antibiotic. The second, an oral form called sultamicillin, is marketed under the trade name Ampictam outside the United States. And generic only in the United States, ampicillin/sulbactam is used to treat infections caused by bacteria resistant to beta-lactam antibiotics. Sulbactam blocks the enzyme which breaks down ampicillin and thereby allows ampicillin to attack and kill the bacteria.

Flucloxacillin chemical compound

Flucloxacillin, also known as floxacillin, is a narrow-spectrum beta-lactam antibiotic of the penicillin class. It is used to treat infections caused by susceptible Gram-positive bacteria. Unlike other penicillins, flucloxacillin has activity against beta-lactamase-producing organisms such as Staphylococcus aureus as it is beta-lactamase stable. However, it is ineffective against methicillin-resistant Staphylococcus aureus (MRSA). It is very similar to dicloxacillin; they are considered interchangeable.

Dicloxacillin chemical compound

Dicloxacillin is a narrow-spectrum β-lactam antibiotic of the penicillin class. It is used to treat infections caused by susceptible (non-resistant) Gram-positive bacteria. It is active against beta-lactamase-producing organisms such as Staphylococcus aureus, which would otherwise be resistant to most penicillins. Dicloxacillin is available under a variety of trade names including Diclocil (BMS).

<i>Bacteroides fragilis</i> species of bacterium

Bacteroides fragilis is an obligately anaerobic, Gram-negative, rod-shaped bacterium. It is part of the normal microbiota of the human colon and is generally commensal, but can cause infection if displaced into the bloodstream or surrounding tissue following surgery, disease, or trauma.

<i>Eikenella corrodens</i> species of bacterium

Eikenella corrodens is a fastidious Gram-negative facultative anaerobic bacillus. It was first identified by M. Eiken in 1958, who called it Bacteroides corrodens.

β-Lactamase inhibitor Endogenous substances and drugs that inhibit or block the activity of beta-lactamases

Beta-lactamases are a family of enzymes involved in bacterial resistance to beta-lactam antibiotics. They act by breaking the beta-lactam ring that allows penicillin-like antibiotics to work. Strategies for combating this form of resistance have included the development of new beta-lactam antibiotics that are more resistant to cleavage and the development of the class of enzyme inhibitors called beta-lactamase inhibitors. Although β-lactamase inhibitors have little antibiotic activity of their own, they prevent bacterial degradation of beta-lactam antibiotics and thus extend the range of bacteria the drugs are effective against.

Ceftobiprole chemical compound

Ceftobiprole (Zevtera/Mabelio) is a new 5th-generation cephalosporin for the treatment of hospital-acquired pneumonia and community-acquired pneumonia. It is marketed by Basilea Pharmaceutica in the United Kingdom, Germany, Switzerland and Austria under the trade name Zevtera, in France and Italy under the trade name Mabelio. Like other cephalosporins, ceftobiprole exerts its antibacterial activity by binding to important penicillin-binding proteins and inhibiting their transpeptidase activity which is essential for the synthesis of bacterial cell walls. Ceftobiprole has high affinity for penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus strains and retains its activity against strains that express divergent mecA gene homologues. Ceftobiprole also binds to penicillin-binding protein 2b in Streptococcus pneumoniae (penicillin-intermediate), to penicillin-binding protein 2x in Streptococcus pneumoniae (penicillin-resistant), and to penicillin-binding protein 5 in Enterococcus faecalis.

<i>Actinobacillus</i> genus of bacteria

Actinobacillus is a genus of Gram-negative, nonmotile and non-spore-forming, oval to rod-shaped bacteria occurring as parasites or pathogens in mammals, birds, and reptiles. It is a member of the Pasteurellaceae family. The bacteria are facultatively aerobic or anaerobic, capable of fermenting carbohydrates, and of reducing nitrates. The genomic DNA contains between 40 and 47 mol % guanine plus cytosine.

Kingella kingae is a species of Gram-negative aerobic coccobacilli. First isolated in 1960 by Elizabeth O. King, it was not recognized as a significant cause of infection in young children until the 1990s, when culture techniques had improved enough for it to be recognized. It is best known as a cause of septic arthritis, osteomyelitis, spondylodiscitis, bacteraemia, and endocarditis, and less frequently lower respiratory tract infections and meningitis.

Carbapenem-resistant Enterobacteriaceae (CRE) or carbapenemase-producing Enterobacteriaceae (CPE) are Gram-negative bacteria that are resistant to the carbapenem class of antibiotics, considered the drugs of last resort for such infections. They are resistant because they produce an enzyme called a carbapenemase that disables the drug molecule. The resistance can vary from moderate to severe. Enterobacteriaceae are common commensals and infectious agents. Experts fear CRE as the new "superbug". The bacteria can kill up to half of patients who get bloodstream infections. Tom Frieden, former head of the Centers for Disease Control and Prevention has referred to CRE as "nightmare bacteria". Types of CRE are sometimes known as KPC and NDM. KPC and NDM are enzymes that break down carbapenems and make them ineffective. Both of these enzymes, as well as the enzyme VIM have also been reported in Pseudomonas.

Suttonella indologenes, formerly Kingella indologenes, is a Gram-negative rod-shaped bacterium of the family Cardiobacteriaceae. Like other members of its family, it is a bacterium that is assumed to be normally present in the respiratory tract. It has been found to rarely cause endocarditis, an infection of the heart valves. It also been found in the eye. It may cause eye infections. Little is known about it as a bacterium other than its structure and biochemical composition. Like other members in its family, it has a characteristic 16S ribosomal RNA which consists of 1474 base pairs.


  1. Malani, AN; Aronoff, DM; Bradley, SF; Kauffman, CA (September 2006). "Cardiobacterium hominis endocarditis: Two cases and a review of the literature". European Journal of Clinical Microbiology & Infectious Diseases . 25 (9): 587–95. doi:10.1007/s10096-006-0189-9. PMC   2276845 . PMID   16955250.
  2. 1 2 Savage, DD; Kagan, RL; Young, NA; Horvath, AE (January 1977). "Cardiobacterium hominis endocarditis: Description of two patients and characterization of the organism". Journal of Clinical Microbiology . 5 (1): 75–80. PMC   274535 . PMID   833269 . Retrieved 2010-03-15.
  3. 1 2 3 Wilson, WR; Karchmer, AW; Dajani, AS; Taubert, KA; et al. (December 1995). "Antibiotic treatment of adults with infective endocarditis due to streptococci, enterococci, staphylococci, and HACEK microorganisms. American Heart Association". JAMA . 274 (21): 1706–13. doi:10.1001/jama.274.21.1706. PMID   7474277.
  4. Lu, PL; Hsueh, PR; Hung, CC; Teng, LJ; et al. (May 2000). "Infective endocarditis complicated with progressive heart failure due to beta-lactamase-producing Cardiobacterium hominis". Journal of Clinical Microbiology . 38 (5): 2015–7. PMC   86656 . PMID   10790145 . Retrieved 2010-03-15.
  5. Pfaller, Michael A.; Murray, Patrick R.; Rosenthal, Ken S. (2009). Medical Microbiology. Philadelphia: Mosby / Elsevier. p. 374. ISBN   0-323-05470-6.
  6. Torok, Estee; Moran, Ed; Cooke, Fiona (2009). Oxford Handbook of Infectious Diseases and Microbiolology. Oxford University Press. ISBN   9780198569251.[ full citation needed ]