Caribbean Plate

Last updated
Caribbean Plate
CaribbeanPlate.png
Type Minor
Approximate area3,300,000 km2 [1]
Movement1north-west
Speed110-11mm/year
Features Central America, Greater Antilles, Lesser Antilles Caribbean Sea
1Relative to the African Plate
Volcanoes of the Caribbean. CaribbeanVolcanoMap (cropped).gif
Volcanoes of the Caribbean.

The Caribbean Plate is a mostly oceanic tectonic plate underlying Central America and the Caribbean Sea off the northern coast of South America.

Contents

Roughly 3.2 million square kilometres (1.2 million square miles) in area, the Caribbean Plate borders the North American Plate, the South American Plate, the Nazca Plate and the Cocos Plate. These borders are regions of intense seismic activity, including frequent earthquakes, occasional tsunamis, [2] and volcanic eruptions.

Boundary types

Bathymetry of the northeast corner of the Caribbean Plate showing the major faults and plate boundaries; view looking south-west. The main bathymetric features of this area include: the Lesser Antilles Volcanic Arc; the old inactive volcanic arc of the Greater Antilles (Virgin Islands, Puerto Rico, and Hispaniola); the Muertos Trough; and the Puerto Rico Trench formed at the plate boundary zone between the Caribbean and obliquely subducting North American Plates. Vertical exaggeration is 5:1. Bathymetry of the northeast corner of the Caribbean Plate showing the major faults and plate boundaries.jpg
Bathymetry of the northeast corner of the Caribbean Plate showing the major faults and plate boundaries; view looking south-west. The main bathymetric features of this area include: the Lesser Antilles Volcanic Arc; the old inactive volcanic arc of the Greater Antilles (Virgin Islands, Puerto Rico, and Hispaniola); the Muertos Trough; and the Puerto Rico Trench formed at the plate boundary zone between the Caribbean and obliquely subducting North American Plates. Vertical exaggeration is 5:1.

The northern boundary with the North American Plate is a transform or strike-slip boundary that runs from the border area of Belize, Guatemala (Motagua Fault), and Honduras in Central America, eastward through the Cayman trough along the Swan Islands Transform Fault before joining the southern boundary of the Gonâve Microplate. East of the Mid-Cayman Rise this continues as the Walton fault zone and the Enriquillo–Plantain Garden fault zone into eastern Hispaniola. From there it continues into Puerto Rico, and the Virgin Islands. Part of the Puerto Rico Trench, the deepest part of the Atlantic Ocean (roughly 8,400 metres or 27,600 feet), lies along this border. The Puerto Rico Trench is at a complex transition from the subduction boundary to the south and the transform boundary to the west.

The eastern boundary is a subduction zone, the Lesser Antilles subduction zone, where oceanic crust of the South American Plate is being subducted under the Caribbean Plate. Subduction forms the volcanic islands of the Lesser Antilles Volcanic Arc from the Virgin Islands in the north to the islands off the coast of Venezuela in the south. This boundary contains seventeen active volcanoes, most notably Soufriere Hills on Montserrat; Mount Pelée on Martinique; La Grande Soufrière on Guadeloupe; Soufrière Saint Vincent on Saint Vincent; and the submarine volcano Kick 'em Jenny which lies about 10 km north of Grenada. Large historical earthquakes in 1839 and 1843 in this region are possibly megathrust earthquakes. [3] [4]

Along the geologically complex southern boundary, [5] the Caribbean Plate interacts with the South American Plate forming Barbados, Trinidad and Tobago (all on the Caribbean Plate), and islands off the coast of Venezuela (including the Leeward Antilles) and Colombia. This boundary is in part the result of transform faulting, along with thrust faulting and some subduction. The rich Venezuelan petroleum fields possibly result from this complex plate interaction. The Caribbean Plate is moving eastward about 22 millimetres (0.87 in) per year in relation to the South American plate. [6] [7] In Venezuela, much of the movement between the Caribbean Plate and the South American Plate occurs along the faults of Boconó, El Pilar and San Sebastián. [5]

The western portion of the plate is occupied by Central America. The Cocos Plate in the Pacific Ocean is subducted beneath the Caribbean Plate, just off the western coast of Central America. This subduction forms the volcanoes of Guatemala, El Salvador, Nicaragua, and Costa Rica, also known as the Central America Volcanic Arc.

Origin

The usual theory of the origin of the Caribbean Plate was confronted by a contrasting theory in 2002.

The mainstream theory holds that it is the Caribbean large igneous province (CLIP) which formed in the Pacific Ocean tens of millions of years ago, perhaps originating at the Galapagos Hotspot. [8] As the Atlantic Ocean widened, North America and South America were pushed westward, separated for a time by oceanic crust. [9] The Pacific Ocean floor subducted under this oceanic crust between the continents. The CLIP drifted into the same area, but as it was less dense and thicker than the surrounding oceanic crust, it did not subduct, but rather overrode the ocean floor, continuing to move eastward relative to North America and South America. With the formation of the Isthmus of Panama 3 million years ago, it ultimately lost its connection to the Pacific.

The more recent theory asserts that the Caribbean Plate came into being from an Atlantic hotspot which no longer exists. This theory points to evidence of the absolute motion of the Caribbean Plate which indicates that it moves westward, not east, and that its apparent eastward motion is only relative to the motions of the North American Plate and the South American Plate. [10]

First American land bridge

The Caribbean Plate began its eastward migration 80  million years ago (Ma) during the Late Cretaceous. This migration eventually resulted in a volcanic arc stretching from northwestern South America to the Yucatán Peninsula, today represented by the Aves Islands and the Lesser and Greater Antilles. This arc was the subject of constant tectonism and sea-level fluctuation, but lasted until the mid-Eocene and intermittently formed a land bridge along the eastern and northern boundaries of the Caribbean Plate. [11] What would eventually become present-day Central America, part of the western plate boundary, was still isolated in the Pacific.

58.5 to 56.5 Ma, during the Late Paleocene, a local sea-level low-stand assisted by the continental uplift of the western margin of South America, resulted in a fully operative land bridge over which several groups of mammals apparently took part in an interchange. For example, specimens have been assigned to xenarthrana, didelphidae, and phorusrhacidae from Eocene North America and Europe (although these have been criticized), [11] [12] and Peradectes from Paleocene South America. [13]

Great American Interchange

The Great American Interchange in which land and freshwater fauna migrated between North America and South America via the uplifted western margin of the Caribbean Plate (Central America) was a later event, which peaked dramatically around 2.6 million years (Ma) ago during the Piacenzian age.

See also

Related Research Articles

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.

<span class="mw-page-title-main">Ring of Fire</span> Region around the rim of the Pacific Ocean where many volcanic eruptions and earthquakes occur

The Ring of Fire is a tectonic belt, about 40,000 km (25,000 mi) long and up to about 500 km (310 mi) wide, which circumscribes the Pacific Ocean. It contains between 750 and 915 volcanoes, around two-thirds of the world total, and 90% of the world's earthquakes, including 81% of its largest, take place within the belt.

<span class="mw-page-title-main">Convergent boundary</span> Region of active deformation between colliding tectonic plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

<span class="mw-page-title-main">North American Plate</span> Large tectonic plate including most of North America, Greenland and part of Siberia

The North American Plate is a tectonic plate covering most of North America, Cuba, the Bahamas, extreme northeastern Asia, and parts of Iceland and the Azores. With an area of 76 million km2 (29 million sq mi), it is the Earth's second largest tectonic plate, behind the Pacific Plate.

<span class="mw-page-title-main">Cocos Plate</span> Young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America

The Cocos Plate is a young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America, named for Cocos Island, which rides upon it. The Cocos Plate was created approximately 23 million years ago when the Farallon Plate broke into two pieces, which also created the Nazca Plate. The Cocos Plate also broke into two pieces, creating the small Rivera Plate. The Cocos Plate is bounded by several different plates. To the northeast it is bounded by the North American Plate and the Caribbean Plate. To the west it is bounded by the Pacific Plate and to the south by the Nazca Plate.

<span class="mw-page-title-main">Volcanic arc</span> Chain of volcanoes formed above a subducting plate

A volcanic arc is a belt of volcanoes formed above a subducting oceanic tectonic plate, with the belt arranged in an arc shape as seen from above. Volcanic arcs typically parallel an oceanic trench, with the arc located further from the subducting plate than the trench. The oceanic plate is saturated with water, mostly in the form of hydrous minerals such as micas, amphiboles, and serpentines. As the oceanic plate is subducted, it is subjected to increasing pressure and temperature with increasing depth. The heat and pressure break down the hydrous minerals in the plate, releasing water into the overlying mantle. Volatiles such as water drastically lower the melting point of the mantle, causing some of the mantle to melt and form magma at depth under the overriding plate. The magma ascends to form an arc of volcanoes parallel to the subduction zone.

<span class="mw-page-title-main">Geology of Japan</span> Overview of the geology of Japan

The islands of Japan are primarily the result of several large ocean movements occurring over hundreds of millions of years from the mid-Silurian to the Pleistocene, as a result of the subduction of the Philippine Sea Plate beneath the continental Amurian Plate and Okinawa Plate to the south, and subduction of the Pacific Plate under the Okhotsk Plate to the north.

<span class="mw-page-title-main">Maracaibo Basin</span> Foreland basin in Venezuela

The Maracaibo Basin, also known as Lake Maracaibo natural region, Lake Maracaibo depression or Lake Maracaibo Lowlands, is a foreland basin and one of the eight natural regions of Venezuela, found in the northwestern corner of Venezuela in South America. Covering over 36,657 square km, it is a hydrocarbon-rich region that has produced over 30 billion bbl of oil with an estimated 44 billion bbl yet to be recovered. The basin is characterized by a large shallow tidal estuary, Lake Maracaibo, located near its center. The Maracaibo basin has a complex tectonic history that dates back to the Jurassic period with multiple evolution stages. Despite its complexity, these major tectonic stages are well preserved within its stratigraphy. This makes The Maracaibo basin one of the most valuable basins for reconstructing South America's early tectonic history.

<span class="mw-page-title-main">Accretion (geology)</span> Geological process by which material is added to a tectonic plate at a subduction zone

Accretion, in geology, is a process by which material is added to a tectonic plate at a subduction zone, frequently on the edge of existing continental landmasses. The added material may be sediment, volcanic arcs, seamounts, oceanic crust or other igneous features.

<span class="mw-page-title-main">Explorer Ridge</span> Mid-ocean ridge west of British Columbia, Canada

The Explorer Ridge is a mid-ocean ridge, a divergent tectonic plate boundary located about 241 km (150 mi) west of Vancouver Island, British Columbia, Canada. It lies at the northern extremity of the Pacific spreading axis. To its east is the Explorer Plate, which together with the Juan de Fuca Plate and the Gorda Plate to its south, is what remains of the once-vast Farallon Plate which has been largely subducted under the North American Plate. The Explorer Ridge consists of one major segment, the Southern Explorer Ridge, and several smaller segments. It runs northward from the Sovanco Fracture Zone to the Queen Charlotte Triple Junction, a point where it meets the Queen Charlotte Fault and the northern Cascadia subduction zone.

<span class="mw-page-title-main">Geology of the Pacific Northwest</span> Geology of Oregon and Washington (United States) and British Columbia (Canada)

The geology of the Pacific Northwest includes the composition, structure, physical properties and the processes that shape the Pacific Northwest region of North America. The region is part of the Ring of Fire: the subduction of the Pacific and Farallon Plates under the North American Plate is responsible for many of the area's scenic features as well as some of its hazards, such as volcanoes, earthquakes, and landslides.

<span class="mw-page-title-main">Izu–Bonin–Mariana Arc</span> Convergent boundary in Micronesia

The Izu–Bonin–Mariana (IBM) arc system is a tectonic plate convergent boundary in Micronesia. The IBM arc system extends over 2800 km south from Tokyo, Japan, to beyond Guam, and includes the Izu Islands, the Bonin Islands, and the Mariana Islands; much more of the IBM arc system is submerged below sealevel. The IBM arc system lies along the eastern margin of the Philippine Sea Plate in the Western Pacific Ocean. It is the site of the deepest gash in Earth's solid surface, the Challenger Deep in the Mariana Trench.

<span class="mw-page-title-main">Molucca Sea Plate</span> Small fully subducted tectonic plate near Indonesia

Located in the western Pacific Ocean near Indonesia, the Molucca Sea Plate has been classified by scientists as a fully subducted microplate that is part of the Molucca Sea Collision Complex. The Molucca Sea Plate represents the only known example of divergent double subduction (DDS), which describes the subduction on both sides of a single oceanic plate.

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Philippine Mobile Belt</span> Tectonic boundary

In the geology of the Philippines, the Philippine Mobile Belt is a complex portion of the tectonic boundary between the Eurasian Plate and the Philippine Sea Plate, comprising most of the country of the Philippines. It includes two subduction zones, the Manila Trench to the west and the Philippine Trench to the east, as well as the Philippine Fault System. Within the Belt, a number of crustal blocks or microplates which have been shorn off the adjoining major plates are undergoing massive deformation.

<span class="mw-page-title-main">Aleutian Arc</span> Volcanic arc in Alaska, United States

The Aleutian Arc is a large volcanic arc of islands extending from the Southwest tip of the U.S. state of Alaska to the Kamchatka Peninsula that is owned by the Russian Federation.

<span class="mw-page-title-main">Lesser Antilles Volcanic Arc</span> Volcanic arc that forms the eastern boundary of the Caribbean Plate

The Lesser Antilles Volcanic Arc is a volcanic arc that forms the eastern boundary of the Caribbean Plate. It is part of a subduction zone, also known as the Lesser Antilles subduction zone, where the oceanic crust of the North American Plate is being subducted under the Caribbean Plate. This subduction process formed a number of volcanic islands, from the Virgin Islands in the north to the islands off the coast of Venezuela in the south. The Lesser Antilles Volcanic Arc includes 21 'active' volcanoes, notably Soufriere Hills on Montserrat; Mount Pelée on Martinique; La Grande Soufrière on Guadeloupe; Soufrière Saint Vincent on Saint Vincent; Mount Scenery on Saba; and the submarine volcano Kick 'em Jenny which lies about 10 kilometres (5.4 nmi) north of Grenada.

<span class="mw-page-title-main">Lau Basin</span> Oceanic basin in the South Pacific Ocean between Fiji and Tonga

The Lau Basin is a back-arc basin at the Australian-Pacific plate boundary. It is formed by the Pacific plate subducting under the Australian plate. The Tonga-Kermadec Ridge, a frontal arc, and the Lau-Colville Ridge, a remnant arc, sit to the eastern and western sides of the basin, respectively. The basin has a raised transition area to the south where it joins the Havre Trough.

The geology of Panama includes the complex tectonic interplay between the Pacific, Cocos and Nazca plates, the Caribbean Plate and the Panama Microplate.

The geology of Costa Rica is part of the Panama Microplate, which is slowly moving north relative to the stable Caribbean Plate.

References

  1. "Sizes of Tectonic or Lithospheric Plates". About.com Geology. Archived from the original on 2007-02-09. Retrieved 2015-05-05.
  2. Fernández-Arce, Mario; Alvarado-Delgado, Guillermo (December 2005). "Tsunamis and Tsunami Preparedness in Costa Rica, Central America" (PDF). ISET Journal of Earthquake Technology. Paper No. 466. 42 (4): 203–212. ISSN   0972-0405.
  3. Robson, G.R. (1964). "An Earthquake Catalogue for the Eastern Caribbean 1530–1960" . Bulletin of the Seismological Society of America. 54 (2): 785–832. Bibcode:1964BuSSA..54..785R. doi:10.1785/BSSA0540020785.
  4. Feuillet, N.; Beauducel, F.; Tapponnier, P. (2011). "Tectonic context of moderate to large historical earthquakes in the Lesser Antilles and mechanical coupling with volcanoes" (PDF). Journal of Geophysical Research . 116 (B10): B10308. Bibcode:2011JGRB..11610308F. doi:10.1029/2011JB008443. hdl:10220/8653.
  5. 1 2 Audemard, Franck A.; Singer P., André (1996). "Active fault recognition in northwestern Venezuela and its seismogenic characterization: Neotectonic and paleoseismic approach". Geofísica Internacional . 35 (3): 245–255. doi: 10.22201/igeof.00167169p.1996.35.3.460 . Retrieved 24 November 2015.
  6. Deiros D (2000) [Determination of Displacement Between Caribbean and South American Plates in Venezuela using Global Positioning System (GPS) data.] Geological Code of Venezuela. (in Spanish)
  7. Pérez OJ, Bilham R, Bendick R, Hernández N, Hoyer M, Velandia J, Moncayo C y Kozuch M (2001) Relative velocity between the Caribbean and South America Plates from observations Within the Global Positioning System (GPS) in northern Venezuela.(in Spanish)
  8. "Crustal structure across the Pacific margin of Nicaragua", Walther, C. H. E. et al, Geophysical Journal, Volume 141, Issue 3, pp. 759-777, (2000).
  9. James, K.H.; Lorente, M.A.; Pindell, J.L., eds. (2009). The Origin and Evolution of the Caribbean Plate (PDF). London: The Geological Society of London. ISBN   978-1-86239-288-5.
  10. Meschede, Martin; Frisch, Wolfgang (2002). "The evolution of the Caribbean Plate and its relation to global motion vectors: geometric constraints for an inter-american origin". In Jackson, T.A. (ed.). Caribbean Geology: Into the Third Millennium : Transactions of the Fifteenth Caribbean Geological Conference. University of West Indies Press. p. 279. ISBN   978-976-640-100-9.
  11. 1 2 Marshall, L.G.; Sempere, T.; Butler, R.F. (1997). "Chronostratigraphy of the Mammal-Bearing Paleocene of South America" (PDF). Journal of South American Earth Sciences. 10 (1): 63. Bibcode:1997JSAES..10...49M. doi:10.1016/S0895-9811(97)00005-9.
  12. Angst, Delphine; Buffetaut, Eric; Lécuyer, Christophe; Amiot, Romain (2013-11-27). ""Terror Birds" (Phorusrhacidae) from the Eocene of Europe Imply Trans-Tethys Dispersal". PLOS ONE. 8 (11): e80357. doi: 10.1371/journal.pone.0080357 . ISSN   1932-6203. PMC   3842325 . PMID   24312212.
  13. Janis, Christine M.; Gunnell, Gregg F.; Uhen, Mark D., eds. (2008). Evolution of Tertiary Mammals of North America: Volume 2: Small Mammals, Xenarthrans, and Marine Mammals. Vol. 2. Cambridge: Cambridge University Press. ISBN   978-0-521-78117-6.