Cassini projection

Last updated

The Cassini projection (also sometimes known as the Cassini–Soldner projection or Soldner projection  ) is a map projection described by César-François Cassini de Thury in 1745.  It is the transverse aspect of the equirectangular projection, in that the globe is first rotated so the central meridian becomes the "equator", and then the normal equirectangular projection is applied. Considering the earth as a sphere, the projection is composed of the operations: A map projection is a systematic transformation of the latitudes and longitudes of locations from the surface of a sphere or an ellipsoid into locations on a plane. Maps cannot be created without map projections. All map projections necessarily distort the surface in some fashion. Depending on the purpose of the map, some distortions are acceptable and others are not; therefore, different map projections exist in order to preserve some properties of the sphere-like body at the expense of other properties. There is no limit to the number of possible map projections. César-François Cassini de Thury, also called Cassini III or Cassini de Thury, was a French astronomer and cartographer. The equirectangular projection is a simple map projection attributed to Marinus of Tyre, who Ptolemy claims invented the projection about AD 100. The projection maps meridians to vertical straight lines of constant spacing, and circles of latitude to horizontal straight lines of constant spacing. The projection is neither equal area nor conformal. Because of the distortions introduced by this projection, it has little use in navigation or cadastral mapping and finds its main use in thematic mapping. In particular, the plate carrée has become a standard for global raster datasets, such as Celestia and NASA World Wind, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth.

Contents

$x=\arcsin(\cos \varphi \sin \lambda )\qquad y=\arctan \left({\frac {\tan \varphi }{\cos \lambda }}\right).$ where λ is the longitude from the central meridian and φ is the latitude. When programming these equations, the inverse tangent function used is actually the atan2 function, with the first argument sin φ and the second cos φ cos λ. The function or is defined as the angle in the Euclidean plane, given in radians, between the positive x-axis and the ray to the point (x,y) ≠ (0,0).

The reverse operation is composed of the operations:

$\varphi =\arcsin(\sin y\cos x)\qquad \lambda =\operatorname {atan2} (\tan x,\cos y).$ In practice, the projection has always been applied to models of the earth as an ellipsoid, which greatly complicates the mathematical development but is suitable for surveying. Nevertheless, the use of the Cassini projection has largely been superseded by the transverse Mercator projection, at least with central mapping agencies. In geodesy, a reference ellipsoid is a mathematically defined surface that approximates the geoid, the truer figure of the Earth, or other planetary body. Because of their relative simplicity, reference ellipsoids are used as a preferred surface on which geodetic network computations are performed and point coordinates such as latitude, longitude, and elevation are defined.

Distortions

Areas along the central meridian, and at right angles to it, are not distorted. Elsewhere, the distortion is largely in a north-south direction, and varies by the square of the distance from the central meridian. As such, the greater the longitudinal extent of the area, the worse the distortion becomes.

Due to this, the Cassini projection works best on long, narrow areas, and worst on wide areas.

Elliptical form

Cassini is known as a spherical projection, but can be generalised as an elliptical form.

Considering the earth as an ellipse, the projection is composed of these operations:

$N=(1-e^{2}\sin ^{2}\varphi )^{-1/2}$ $T=\tan ^{2}\varphi$ $A=\lambda \cos \varphi$ $C={\frac {e^{2}}{1-e^{2}}}\cos ^{2}\varphi$ $x=N\left(A-T{\frac {A^{3}}{6}}-(8-T+8C)T{\frac {A^{5}}{120}}\right)$ $y=M(\varphi )-M(\varphi _{0})+(N\tan \varphi )\left({\frac {A^{2}}{2}}+(5-T+6C){\frac {A^{4}}{24}}\right)$ and M is the meridional distance function.

The reverse operation is composed of the operations:

$\varphi '=M^{-1}(M(\varphi _{0})+y)$ If $\varphi '={\frac {\pi }{2}}$ then $\varphi =\varphi '$ and $\lambda =0.$ Otherwise calculate T and N as above with $\varphi '$ , and

$R=(1-e^{2})(1-e^{2}\sin ^{2}\varphi ')^{-3/2}$ $D=x/N$ $\varphi =\varphi '-{\frac {N\tan \varphi '}{R}}\left({\frac {D^{2}}{2}}-(1+3T){\frac {D^{4}}{24}}\right)$ $\lambda ={\frac {D-T{\frac {D^{3}}{3}}+(1+3T)T{\frac {D^{5}}{15}}}{\cos \varphi '}}$ Related Research Articles The Mercator projection is a cylindrical map projection presented by the Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for nautical navigation because of its ability to represent lines of constant course, known as rhumb lines or loxodromes, as straight segments that conserve the angles with the meridians. Although the linear scale is equal in all directions around any point, thus preserving the angles and the shapes of small objects, the Mercator projection distorts the size of objects as the latitude increases from the Equator to the poles, where the scale becomes infinite. So, for example, landmasses such as Greenland and Antarctica appear much larger than they actually are, relative to landmasses near the equator such as Central Africa. In navigation, a rhumb line, rhumb, or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant bearing as measured relative to true or magnetic north. The transverse Mercator map projection is an adaptation of the standard Mercator projection. The transverse version is widely used in national and international mapping systems around the world, including the UTM. When paired with a suitable geodetic datum, the transverse Mercator delivers high accuracy in zones less than a few degrees in east-west extent. The use of orthographic projection in cartography dates back to antiquity. Like the stereographic projection and gnomonic projection, orthographic projection is a perspective projection, in which the sphere is projected onto a tangent plane or secant plane. The point of perspective for the orthographic projection is at infinite distance. It depicts a hemisphere of the globe as it appears from outer space, where the horizon is a great circle. The shapes and areas are distorted, particularly near the edges. The Craig retroazimuthal map projection was created by James Ireland Craig in 1909. It is a modified cylindrical projection. As a retroazimuthal projection, it preserves directions from everywhere to one location of interest that is configured during construction of the projection. The projection is sometimes known as the Mecca projection because Craig, who had worked in Egypt as a cartographer, created it to help Muslims find their qibla. In such maps, Mecca is the configurable location of interest. The Mollweide projection is an equal-area, pseudocylindrical map projection generally used for global maps of the world or night sky. It is also known as the Babinet projection, homalographic projection, homolographic projection, and elliptical projection. The projection trades accuracy of angle and shape for accuracy of proportions in area, and as such is used where that property is needed, such as maps depicting global distributions. The azimuthal equidistant projection is an azimuthal map projection. It has the useful properties that all points on the map are at proportionally correct distances from the center point, and that all points on the map are at the correct azimuth (direction) from the center point. A useful application for this type of projection is a polar projection which shows all meridians as straight, with distances from the pole represented correctly. The flag of the United Nations contains an example of a polar azimuthal equidistant projection.

The scale of a map is the ratio of a distance on the map to the corresponding distance on the ground. This simple concept is complicated by the curvature of the Earth's surface, which forces scale to vary across a map. Because of this variation, the concept of scale becomes meaningful in two distinct ways. The first way is the ratio of the size of the generating globe to the size of the Earth. The generating globe is a conceptual model to which the Earth is shrunk and from which the map is projected. The Bonne projection is a pseudoconical equal-area map projection, sometimes called a dépôt de la guerre, modified Flamsteed, or a Sylvanus projection. Although named after Rigobert Bonne (1727–1795), the projection was in use prior to his birth, in 1511 by Sylvano, Honter in 1561, De l'Isle before 1700 and Coronelli in 1696. Both Sylvano and Honter’s usages were approximate, however, and it is not clear they intended to be the same projection. The Bottomley map projection is an equal area map projection defined as: The Universal Transverse Mercator (UTM) is a system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system. The van der Grinten projection is a compromise map projection, which means that it is neither equal-area nor conformal. Unlike perspective projections, the van der Grinten projection is an arbitrary geometric construction on the plane. Van der Grinten projects the entire Earth into a circle. It largely preserves the familiar shapes of the Mercator projection while modestly reducing Mercator's distortion. Polar regions are subject to extreme distortion. Space-oblique Mercator projection is a map projection. The Aitoff projection is a modified azimuthal map projection proposed by David A. Aitoff in 1889. Based on the equatorial form of the azimuthal equidistant projection, Aitoff first halves longitudes, then projects according to the azimuthal equidistant, and then stretches the result horizontally into a 2:1 ellipse to compensate for having halved the longitudes. Expressed simply: The Hammer projection is an equal-area map projection described by Ernst Hammer in 1892. Using the same 2:1 elliptical outer shape as the Mollweide projection, Hammer intended to reduce distortion in the regions of the outer meridians, where it is extreme in the Mollweide. In cartography, the cylindrical equal-area projection is a family of cylindrical, equal-area map projections. The Eckert IV projection is an equal-area pseudocylindrical map projection. The length of the polar lines is half that of the equator, and lines of longitude are semiellipses, or portions of ellipses. It was first described by Max Eckert in 1906 as one of a series of three pairs of pseudocylindrical projections. In each pair, the meridians have the same shape, and the odd-numbered projection has equally spaced parallels, whereas the even-numbered projection has parallels spaced to preserve area. The pair to Eckert IV is the Eckert III projection. The armadillo projection is a map projection used for world maps. It is neither conformal nor equal-area but instead affords a view evoking a perspective projection while showing most of the globe instead of the half or less that a perspective would. The projection was presented in 1943 by Erwin Raisz (1893–1968) as part of a series of "orthoapsidal" projections, which are perspectives of the globe projected onto various surfaces. This one in the series has the globe projected onto half a torus. Raisz singled it out and named it the "armadillo" projection. The Strebe 1995 projection, Strebe projection, Strebe lenticular equal-area projection, or Strebe equal-area polyconic projection is an equal-area map projection presented by Daniel "daan" Strebe in 1994. Strebe designed the projection to keep all areas proportionally correct in size; to push as much of the inevitable distortion as feasible away from the continental masses and into the Pacific Ocean; to keep a familiar equatorial orientation; and to do all this without slicing up the map.

1. "Cassini–Soldner – Help". Environmental Systems Research Institute, Inc. Retrieved 9 June 2016.
2. Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp. 74–76, ISBN   0-226-76747-7.