Central America Volcanic Arc

Last updated
Map of the Central American volcanic arc, with captions showing the location of several volcanoes - in the Mexico/Guatemala border: Tacana; in Guatemala: Tajumulco, Santa Maria, Chicabal, Toliman, Atitlan, Volcan de Fuego, Volcan de Agua, Pacaya, Chingo; in El Salvador: Apaneca Range, Chinchontepec or San Vicente, Chaparrastique or San Miguel, Chinameca and Conchagua; in Nicaragua: Cosiguina, Telica, Cerro Negro, Momotombo, Apoyeque-Chiltepe, Mombacho and Concepcion; in Costa Rica: Orosi, Rincon de la Vieja, Miravalles, Arenal, Barva, Turrialba and Irazu; in Panama: Baru and La Yeguada. Central America volcanic belt.jpg
Map of the Central American volcanic arc, with captions showing the location of several volcanoes – in the Mexico/Guatemala border: Tacaná; in Guatemala: Tajumulco, Santa Maria, Chicabal, Tolimán, Atitlán, Volcán de Fuego, Volcán de Agua, Pacaya, Chingo; in El Salvador: Apaneca Range, Chinchontepec or San Vicente, Chaparrastique or San Miguel, Chinameca and Conchagua; in Nicaragua: Cosiguina, Telica, Cerro Negro, Momotombo, Apoyeque-Chiltepe, Mombacho and Concepción; in Costa Rica: Orosí, Rincón de la Vieja, Miravalles, Arenal, Barva, Turrialba and Irazú; in Panama: Barú and La Yeguada.

Introduction

The Central American Volcanic Arc (often abbreviated to CAVA) is a chain of volcanoes which extends parallel to the Pacific coastline of the Central American Isthmus, from Mexico to Panama. This volcanic arc, which has a length of 1,100 kilometers (680 mi) [1] [2] is formed by an active subduction zone, with the Cocos Plate subducting underneath the Caribbean Plate [3] . The region has been volcanically and geologically active for at least the past several million years. Numerous volcanoes are spread throughout various Central American countries; many have been active in the geologic past, some more so than others.

Contents

Tectonic History

The Cocos tectonic plate is along the western edge of Central America. The latter is along the western edge of the Caribbean tectonic plate and can be split into two distinct regimes [3] . These regimes are demarcated roughly by the Costa Rican-Nicaraguan border and can be differentiated by the different tectonic histories of each respective area. The southern portion is part of a magmatic arc, while the northern one is associated with several active margins [3] . Different types of faults also exist within each regime [3] and further serve to differentiate the northern and southern regions’ geologic and tectonic histories from one another.

This Caribbean-Cocos tectonic plate interaction can further explain the volcanism and geologic history of the region. While previous literature has shown a wide range of ages for the subduction of the Cocos plate [4] [5] [6] [7] [8] , it is now believed that this subduction began between two million years ago and three million years ago (between 2 Ma and 3 Ma) [9] [10] , though the area has been geologically active since at least 12 Ma, as evidenced by plate and plate boundary movements, as well as scarp subduction [9] in the area. A gap in volcanism in Central America between 12 Ma and 5 Ma [9] [10] is understood to have occurred as well.

Furthermore, the subduction of the Cocos tectonic plate itself is not thought to be what caused some of the changes in volcanism associated with the Central American Volcanic Arc; while the subduction of the Cocos Ridge is a continual event that has influenced volcanism in Central America, the subduction of the Coiba Ridge—a microplate in the region-- is thought to be the triggering event [9] that instigated changes in volcanic activity in the geologic past. In short, the interaction of numerous tectonic plates—namely the Cocos, Caribbean, North American, and Coiba [3] [9] [10] plates—over the past several million years has helped facilitate the continual existence of the Central American Volcanic Arc, influencing the tectonic and broad geologic history of the area.

Contemporary Regional Overview

The Central American Volcanic Arc consists of hundreds of volcanic formations, including stratovolcanoes, composite volcanos, calderas, and lava domes. From a depositional standpoint, ash falls, ash flows, and deposits of tephra are prevalent throughout the region [1] [11] . Carbon and argon isotope dating has been used to date these deposits to the Quaternary [1] , and it is suspected that several of these volcanos have been sporadically active for much of the past 200,000 years [1] .

Some volcanos in the area have even produced large explosive eruptions in the recent past, including the October 25, 1902, eruption of the Santa Maria volcano in Guatemala [11] . This Plinian eruption spewed upwards of twenty cubic kilometers of ash almost thirty kilometers into the sky [11] . Much of this ash was fine-grained, averaging less than 2 millimeters in size [11] .

Similarly, Cerro Negro, a 250-meter-tall volcano in northwest Nicaragua, erupted in 1971, 1992, and 1995 [12] . The two latter eruptions, occurring in the 1990’s, had similar magmatic compositions to one another, both broadly basaltic. However, as the water and carbon dioxide contents of each eruption were different—with the earlier eruption having higher levels of carbon dioxide and water vapor, and the later eruption degassing many of its volatiles [12] -- markedly different styles of eruption occurred, with the 1992 eruption of Cerro Negro much more explosive than its 1995 counterpart.

Other volcanos in Central America include the Salvadorian Santa Ana, Izalco, and San Salvador volcanoes, the Nicaraguan Masaya volcano, and the Costa Rican Miravalles, Irazú, and Poás volcanoes [13] . Many remain sporadically active to this day, and likely will continue to be active into the future, as geologic and tectonic processes continue to shape the region.

Notes

  1. 1 2 3 4 Rose, W., Conway, F., Pullinger, C., Deino, A. and McIntosh, W., 1999. An improved age framework for late Quaternary silicic eruptions in northern Central America. Bulletin of Volcanology, 61(1-2), pp.106-120.
  2. Whattam, S. and Stern, R., 2015. Arc magmatic evolution and the construction of continental crust at the Central American Volcanic Arc system. International Geology Review, 58(6), pp.653-686.
  3. 1 2 3 4 5 Álvarez-Gómez, J., Meijer, P., Martínez-Díaz, J. and Capote, R., 2008. Constraints from finite element modeling on the active tectonics of northern Central America and the Middle America Trench. Tectonics, 27(1)
  4. Abratis, M., 1998. Geochemical variations in magmatic rocks from southern Costa Rica as a consequence of Cocos Ridge subduction and uplift of the Cordillera de Talamanca. PhD thesis, Universitat zu Gottingen, p. 134.
  5. deBoer, J.Z., Drummond, M.S., Bordelon, M.J., Defant, M.J., Bellon, H., Maury, R.C., 1995. Cenozoic magmatic phases of the Costa Rican island arc (Cordillera de Talamanca). In: Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Spec. Pap.-Geol. Soc. Am. 295, pp. 35– 55.
  6. Grafe, K., 1998. Exhumation and thermal evolution of the Cordillera de Talamanca (Costa Rica): constraints from fission track analysis, 40Ar – 39Ar and 87Rb– 87Sr chronology. PhD thesis, Universitat Tubingen, p. 113.
  7. Collins, L.S., Coates, A.G., Jackson, J.B.C., Obando, J.A., 1995. Timing and rates of emergence of the Limon and Bocas del Toro basins: Caribbean effects of Cocos Ridge subduction? In: Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Spec. Pap.-Geol. Soc. Am. 295, pp. 263– 289.
  8. Lonsdale, P., Klitgord, K.D., 1978. Structure and tectonic history of the eastern Panama Basin. Geol. Soc. Amer. Bull. 89, 981–999.
  9. 1 2 3 4 5 MacMillan, I., Gans, P. and Alvarado, G., 2004. Middle Miocene to present plate tectonic history of the southern Central American Volcanic Arc. Tectonophysics, 392(1-4), pp.325-348.
  10. 1 2 3 Morell, K., Kirby, E., Fisher, D. and van Soest, M., 2012. Geomorphic and exhumational response of the Central American Volcanic Arc to Cocos Ridge subduction. Journal of Geophysical Research: Solid Earth, 117(B4)
  11. 1 2 3 4 Williams, S. and Self, S., 1983. The October 1902 plinian eruption of Santa Maria volcano, Guatemala. Journal of Volcanology and Geothermal Research, 16(1-2), pp.33-56.
  12. 1 2 Roggensack, K., Hervig, R., McKnight, S. and Williams, S., 1997. Explosive Basaltic Volcanism from Cerro Negro Volcano: Influence of Volatiles on Eruptive Style. Science, 277(5332), pp.1639-1642.
  13. Melián, G. et al., 2005. Subduction process and diffuse CO2 degassing rates along Central America volcanic arc, Geophysical Research Abstracts, Vol. 7, 09598, 2005

Related Research Articles

Ring of Fire Region around the rim of the Pacific Ocean where many volcanic eruptions and earthquakes occur

The Ring of Fire is a region around much of the rim of the Pacific Ocean where many volcanic eruptions and earthquakes occur. The Ring of Fire is a horseshoe-shaped belt about 40,000 km (25,000 mi) long and up to about 500 km (310 mi) wide.

Santa María (volcano) Active volcano in Quetzaltenango Department, Guatemala

Santa María Volcano is a large active volcano in the western highlands of Guatemala, in the Quetzaltenango Department near the city of Quetzaltenango.

Pacaya

Pacaya is an active complex volcano in Guatemala, which first erupted approximately 23,000 years ago and has erupted at least 23 times since the Spanish conquest of Guatemala. It rises to an elevation of 2,552 metres (8,373 ft). After being dormant for over 70 years, it began erupting vigorously in 1961 and has been erupting frequently since then. Much of its activity is Strombolian, but occasional Plinian eruptions also occur, sometimes showering the area of the nearby Departments with ash.

Trans-Mexican Volcanic Belt

The Trans-Mexican Volcanic Belt, also known as the Transvolcanic Belt and locally as the Sierra Nevada, is an active volcanic belt that covers central-southern Mexico. Several of its highest peaks have snow all year long, and during clear weather, they are visible to a large percentage of those who live on the many high plateaus from which these volcanoes rise.

Sunda Arc A volcanic arc

The Sunda Arc is a volcanic arc that produced the volcanoes that form the topographic spine of the islands of Sumatra, Nusa Tenggara, and Java, the Sunda Strait and the Lesser Sunda Islands. The Sunda Arc begins at Sumatra and ends at Flores, and is adjacent to the Banda Arc. The Sunda Arc is formed via the subduction of the Indo-Australian Plate beneath the Sunda and Burma plates at a velocity of 63–70 mm/year.

Caribbean Plate A mostly oceanic tectonic plate including part of Central America and the Caribbean Sea

The Caribbean Plate is a mostly oceanic tectonic plate underlying Central America and the Caribbean Sea off the north coast of South America.

Incahuasi

Incahuasi is a volcanic mountain in the Andes of South America. It lies on the border of the Catamarca Province of Argentina and the Atacama Region of Chile. Incahuasi has a summit elevation of 6,621 metres (21,722 ft) above sea level.

Cascade Volcanoes Chain of stratovolcanoes in western North America

The Cascade Volcanoes are a number of volcanoes in a volcanic arc in western North America, extending from southwestern British Columbia through Washington and Oregon to Northern California, a distance of well over 700 miles (1,100 km). The arc formed due to subduction along the Cascadia subduction zone. Although taking its name from the Cascade Range, this term is a geologic grouping rather than a geographic one, and the Cascade Volcanoes extend north into the Coast Mountains, past the Fraser River which is the northward limit of the Cascade Range proper.

Volcanic belt Large volcanically active region

A volcanic belt is a large volcanically active region. Other terms are used for smaller areas of activity, such as volcanic fields. Volcanic belts are found above zones of unusually high temperature where magma is created by partial melting of solid material in the Earth's crust and upper mantle. These areas usually form along tectonic plate boundaries at depths of 10 to 50 kilometres. For example, volcanoes in Mexico and western North America are mostly in volcanic belts, such as the Trans-Mexican Volcanic Belt that extends 900 kilometres (560 mi) from west to east across central-southern Mexico and the Northern Cordilleran Volcanic Province in western Canada.

Geology of the Pacific Northwest Geology of Oregon and Washington (United States) and British Columbia (Canada)

The geology of the Pacific Northwest includes the composition, structure, physical properties and the processes that shape the Pacific Northwest region of North America. The region is part of the Ring of Fire: the subduction of the Pacific and Farallon Plates under the North American Plate is responsible for many of the area's scenic features as well as some of its hazards, such as volcanoes, earthquakes, and landslides.

Andean Volcanic Belt Volcanic belt in South America

The Andean Volcanic Belt is a major volcanic belt along the Andean cordillera in Argentina, Bolivia, Chile, Colombia, Ecuador, and Peru. It is formed as a result of subduction of the Nazca Plate and Antarctic Plate underneath the South American Plate. The belt is subdivided into four main volcanic zones which are separated by volcanic gaps. The volcanoes of the belt are diverse in terms of activity style, products, and morphology. While some differences can be explained by which volcanic zone a volcano belongs to, there are significant differences within volcanic zones and even between neighboring volcanoes. Despite being a type location for calc-alkalic and subduction volcanism, the Andean Volcanic Belt has a broad range of volcano-tectonic settings, as it has rift systems and extensional zones, transpressional faults, subduction of mid-ocean ridges and seamount chains as well as a large range of crustal thicknesses and magma ascent paths and different amounts of crustal assimilations.

Taapaca Volcano in Chile

Taapaca is a Holocene volcanic complex in northern Chile's Arica y Parinacota Region. Located in the Chilean Andes, it is part of the Central Volcanic Zone of the Andean Volcanic Belt, one of four distinct volcanic chains in South America. The town of Putre lies at the southwestern foot of the volcano.

Silverthrone Caldera Caldera in British Columbia, Canada

The Silverthrone Caldera is a potentially active caldera complex in southwestern British Columbia, Canada, located over 350 kilometres (220 mi) northwest of the city of Vancouver and about 50 kilometres (31 mi) west of Mount Waddington in the Pacific Ranges of the Coast Mountains. The caldera is one of the largest of the few calderas in western Canada, measuring about 30 kilometres (19 mi) long (north-south) and 20 kilometres (12 mi) wide (east-west). Mount Silverthrone, an eroded lava dome on the caldera's northern flank that is 2,864 metres (9,396 ft) high, may be the highest volcano in Canada.

The Tehuantepec Ridge is a linear undersea ridge located off the west coast of Mexico in the Pacific Ocean. It is the remnant of an old fracture zone, and not a tectonic spreading center ridge. It extends from the eastern end of the Clipperton Fracture Zone northeastward toward Mexico into Chiapas and El Chichón until it is subducted into the Middle America Trench. It lies within the tectonic Cocos Plate, separating the lower and older seafloor of the Guatemala Basin which lies southeast of the ridge from higher and younger seafloor which lies to its northwest.

Geology of Bolivia

The geology of Bolivia comprises a variety of different lithologies as well as tectonic and sedimentary environments. On a synoptic scale, geological units coincide with topographical units. The country is divided into a mountainous western area affected by the subduction processes in the Pacific and an eastern lowlands of stable platforms and shields. The Bolivian Andes is divided into three main ranges; these are from west to east: the Cordillera Occidental that makes up the border to Chile and host several active volcanoes and geothermal areas, Cordillera Central once extensively mined for silver and tin and the relatively low Cordillera Oriental that rather than being a range by its own is the eastern continuation of the Central Cordillera as a fold and thrust belt. Between the Occidental and Central Cordillera the approximately 3,750-meter-high Altiplano high plateau extends. This basin hosts several freshwater lakes, including Lake Titicaca as well as salt-covered dry lakes that bring testimony of past climate changes and lake cycles. The eastern lowlands and sub-Andean zone in Santa Cruz, Chuquisaca, and Tarija Departments was once an old Paleozoic sedimentary basin that hosts valuable hydrocarbon reserves. Further east close to the border with Brazil lies the Guaporé Shield, made up of stable Precambrian crystalline rock.

Tocomar Volcano in Jujuy Province, Argentina

Tocomar is a Pleistocene volcano in the Jujuy Province, Argentina. It is part of the Andean Volcanic Belt, more specifically to its sub-belt the Central Volcanic Zone. The Central Volcanic Zone consists of about 44 active volcanoes and large calderas of the Altiplano-Puna volcanic complex. Volcanism there is caused by the subduction of the Nazca Plate beneath the South America Plate in the Peru-Chile Trench. At Tocomar, volcanism is further influenced by a large fault zone, the Calama-Olacapato-El Toro fault, which runs diagonally across the volcanic arc.

References

Coordinates: 10°26′31″N84°41′17″W / 10.44194°N 84.68806°W / 10.44194; -84.68806