Charge control

Last updated

Charge control is a technology that lets an electric utility control, in real time, the charging of a gridable (plug-in) vehicle, such as a plug-in hybrid (PHEV) or a battery electric vehicle (BEV). Through charge control, the utility is able to postpone charging of the vehicle during time of peak demand. Additionally, this technology may enable the owner and the power company to track the vehicle's usage and performance, while on the road and while charging.

An electric utility is a company in the electric power industry that engages in electricity generation and distribution of electricity for sale generally in a regulated market. The electrical utility industry is a major provider of energy in most countries.

Plug-in hybrid type of vehicle

A plug-in hybrid electric vehicle (PHEV) is a hybrid electric vehicle whose battery can be recharged by plugging it into an external source of electric power, as well by its on-board engine and generator. Most PHEVs are passenger cars, but there are also PHEV versions of commercial vehicles and vans, utility trucks, buses, trains, motorcycles, scooters, and military vehicles.

Battery electric vehicle type of electric vehicle

A battery electric vehicle (BEV), pure electric vehicle, only-electric vehicle or all-electric vehicle is a type of electric vehicle (EV) that uses chemical energy stored in rechargeable battery packs. BEVs use electric motors and motor controllers instead of internal combustion engines (ICEs) for propulsion. They derive all power from battery packs and thus have no internal combustion engine, fuel cell, or fuel tank. BEVs include - but are not limited to - motorcycles, bicycles, scooters, skateboards, rail cars, watercraft, forklifts, buses, trucks, and cars.

Contents

Charge control advantages

Comparison to V2G

In both V2G and charge control, the electric utility can control the power flow between a plug-in vehicle and the power grid. However, in charge control power only flows from the grid to the vehicle, while in V2G power can flow in both directions.

Peak load leveling

Disabling charging in charge control vehicles helps balance the loading on the power grid by "valley filling" (charging at night when demand is low) and "peak shaving" (not charging when demand is high). It can enable utilities new ways to provide regulation services (keeping voltage and frequency stable).

See also

Related Research Articles

Power-line communication (PLC) carries data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers. It is also known as power-line carrier, power-line digital subscriber line (PDSL), mains communication, power-line telecommunications, or power-line networking (PLN).

Electric vehicle vehicle propelled by one or more electric motors

An electric vehicle, also called an EV, uses one or more electric motors or traction motors for propulsion. An electric vehicle may be powered through a collector system by electricity from off-vehicle sources, or may be self-contained with a battery, solar panels or an electric generator to convert fuel to electricity. EVs include, but are not limited to, road and rail vehicles, surface and underwater vessels, electric aircraft and electric spacecraft.

Electricity meter

An electricity meter, electric meter, electrical meter, or energy meter is a device that measures the amount of electric energy consumed by a residence, a business, or an electrically powered device.

Energy demand management, also known as demand-side management (DSM) or demand-side response (DSR), is the modification of consumer demand for energy through various methods such as financial incentives and behavioral change through education.

Grid energy storage

Grid energy storage is a collection of methods used to store electrical energy on a large scale within an electrical power grid. Electrical energy is stored during times when production exceeds consumption, and returned to the grid when production falls below consumption.

Peaking power plant power plant, that generally runs only when there is a high demand

Peaking power plants, also known as peaker plants, and occasionally just "peakers", are power plants that generally run only when there is a high demand, known as peak demand, for electricity. Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants, which supply a dependable and consistent amount of electricity, to meet the minimum demand.

Vehicle-to-grid (V2G) describes a system in which plug-in electric vehicles, such as battery electric vehicles (BEV), plug-in hybrids (PHEV) or hydrogen fuel cell electric vehicles (FCEV), communicate with the power grid to sell demand response services by either returning electricity to the grid or by throttling their charging rate. V2G storage capabilities can also enable EVs to store and discharge electricity generated from renewable energy sources such as solar and wind, with output that fluctuates depending on weather and time of day.

Demand response

Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Until recently electric energy could not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response seeks to adjust the demand for power instead of adjusting the supply.

Advanced Distribution Automation (ADA) is a term coined by the IntelliGrid project in North America to describe the extension of intelligent control over electrical power grid functions to the distribution level and beyond. It is related to distribution automation that can be enabled via the smart grid. The electrical power grid is typically separated logically into transmission systems and distribution systems. Electric power transmission systems typically operate above 110kV, whereas Electricity distribution systems operate at lower voltages. Normally, electric utilities with SCADA systems have extensive control over transmission-level equipment, and increasing control over distribution-level equipment via distribution automation. However, they often are unable to control smaller entities such as Distributed energy resources (DERs), buildings, and homes. It may be advantageous to extend control networks to these systems for a number of reasons:

Hybrid vehicle drivetrains transmit power to the driving wheels for hybrid vehicles. A hybrid vehicle has multiple forms of motive power.

A load following power plant, regarded as producing mid-merit or mid-priced electricity, is a power plant that adjusts its power output as demand for electricity fluctuates throughout the day. Load following plants are typically in-between base load and peaking power plants in efficiency, speed of start up and shut down, construction cost, cost of electricity and capacity factor.

Load balancing (electrical power)

Load balancing, load matching, or daily peak demand reserve refers to the use of various techniques by electrical power stations to store excess electrical power during low demand periods for release as demand rises. The goal would be for the power supply system to see a load factor of 1.

Charging station infrastructure that supplies electric energy for the recharging of electric vehicles

An electric vehicle charging station, also called EV charging station, electric recharging point, charging point, charge point, ECS, and EVSE, is an element in an infrastructure that supplies electric energy for the recharging of electric vehicles, such as plug-in electric vehicles, including electric cars, neighborhood electric vehicles and plug-in hybrids. At home or work, some electric vehicles have onboard converters that can plug into a standard electrical outlet or a high-capacity appliance outlet. Others either require or can use a charging station that provides electrical conversion, monitoring, or safety functionality. These stations are also needed when traveling, and many support faster charging at higher voltages and currents than are available from residential EVSEs. Public charging stations are typically on-street facilities provided by electric utility companies or located at retail shopping centers, restaurants and parkings, and operated by many private companies.

Load management

Load management, also known as demand side management (DSM), is the process of balancing the supply of electricity on the network with the electrical load by adjusting or controlling the load rather than the power station output. This can be achieved by direct intervention of the utility in real time, by the use of frequency sensitive relays triggering the circuit breakers, by time clocks, or by using special tariffs to influence consumer behavior. Load management allows utilities to reduce demand for electricity during peak usage times, which can, in turn, reduce costs by eliminating the need for peaking power plants. In addition, some peaking power plants can take more than an hour to bring on-line which makes load management even more critical should a plant go off-line unexpectedly for example. Load management can also help reduce harmful emissions, since peaking plants or backup generators are often dirtier and less efficient than base load power plants. New load-management technologies are constantly under development — both by private industry and public entities.

Smart grid Electrical grid operated by automatic control devices or controled and maintained from distance.

A smart grid is an electrical grid which includes a variety of operation and energy measures including smart meters, smart appliances, renewable energy resources, and energy efficient resources. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.

Support for the smart grid in the United States became federal policy with passage of the Energy Independence and Security Act of 2007. The law set out $100 million in funding per fiscal year from 2008–2012, established a matching program to states, utilities and consumers to build smart grid capabilities, and created a Grid Modernization Commission to assess the benefits of demand response and to recommend needed protocol standards. The law also directed the National Institute of Standards and Technology to develop smart grid standards, which the Federal Energy Regulatory Commission (FERC) would then promulgate through official rulemakings.

The ancillary services is the services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.

Range extender (vehicle)

A range extender vehicle is a battery electric vehicle that includes an auxiliary power unit (APU) known as a 'range extender'. The range extender drives an electric generator which charges a battery which supplies the vehicle's electric motor with electricity. This arrangement is known as a series hybrid drivetrain. The most commonly used range extenders are internal combustion engines, but fuel-cells or other engine types can be used.

The UCLA Smart Grid Energy Research Center (SMERC), located on the University of California Los Angeles (UCLA) campus, is an organization focused on developing the next generation of technologies and innovation for the SmartGrid. Partnerships with government, technology providers, DOE research labs and universities, utilities, policy makers, and electric vehicle and appliance manufacturers provide SMERC with diverse capabilities and exceptional, matured leadership.

Transactive energy refers to the economic and control techniques used to manage the flow or exchange of energy within an existing electric power system in regards to economic and market based standard values of energy. It is a concept that is used in an effort to improve the efficiency and reliability of the power system, pointing towards a more intelligent and interactive future for the energy industry.

References