Christopher J. Hardy

Last updated
Christopher J. Hardy
Born
New Jersey
CitizenshipAmerican
Alma mater Princeton University
UIUC
Known forCardiac MR Imaging and Spectroscopy, NMR Pulse Design, Real-Time Interactive MRI
AwardsFellow, International Society for Magnetic Resonance in Medicine 2010; Fellow APS 2002, Fellow American Institute for medical and biological Engineering 2003; GE Coolidge Fellow, GE Whitney Award 1989,94,97,2005
Scientific career
Fields Applied Physics, Cardiology, Magnetic Resonance Imaging
Institutions GE Global Research
Academic advisors William A. Edelstein

Christopher J. Hardy (born 1955) is an American physicist and inventor of several magnetic resonance imaging (MRI) subsystem technologies for use in real time MRI [1] and cardiac MR imaging and spectroscopy. [2]

Contents

Biography

Hardy obtained his Ph.D. from the University of Illinois at Urbana-Champaign in March, 1983. He is currently a principal scientist and Coolidge Fellow at General Electric. He developed the first graphical approach that allowed physicians to explore anatomy in real time during cardiac MRI, [3] as opposed to viewing groups of images at a later time, and he also developed a technique that improved imaging speed. [4] Both accomplishments have gained widespread use. He has also led the teams that developed 32 channel [5] and 128 channel [6] General Electric MRI systems.

Hardy has written 98 [7] research papers and 54 patents. [8]

Awards and honors

Selected works

Selected Patents

Related Research Articles

<span class="mw-page-title-main">Magnetic resonance imaging</span> Medical imaging technique

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from computed tomography (CT) and positron emission tomography (PET) scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy.

<span class="mw-page-title-main">Iterative reconstruction</span>

Iterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D images in certain imaging techniques. For example, in computed tomography an image must be reconstructed from projections of an object. Here, iterative reconstruction techniques are usually a better, but computationally more expensive alternative to the common filtered back projection (FBP) method, which directly calculates the image in a single reconstruction step. In recent research works, scientists have shown that extremely fast computations and massive parallelism is possible for iterative reconstruction, which makes iterative reconstruction practical for commercialization.

Graham Wiggins was an American musician and scientist. He played the didgeridoo, keyboards, melodica, sampler, and various percussion instruments with his groups, the Oxford-based Outback and Dr. Didg. He also developed new technologies for magnetic resonance imaging (MRI).

Magnetic resonance elastography (MRE) is a form of elastography that specifically leverages MRI to quantify and subsequently map the mechanical properties of soft tissue. First developed and described at Mayo Clinic by Muthupillai et al. in 1995, MRE has emerged as a powerful, non-invasive diagnostic tool, namely as an alternative to biopsy and serum tests for staging liver fibrosis.

Magnetic resonance spectroscopic imaging (MRSI) is a noninvasive imaging method that provides spectroscopic information in addition to the image that is generated by MRI alone.

<span class="mw-page-title-main">Susceptibility weighted imaging</span>

Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images. This method exploits the susceptibility differences between tissues and uses the phase image to detect these differences. The magnitude and phase data are combined to produce an enhanced contrast magnitude image. The imaging of venous blood with SWI is a blood-oxygen-level dependent (BOLD) technique which is why it was referred to as BOLD venography. Due to its sensitivity to venous blood SWI is commonly used in traumatic brain injuries (TBI) and for high resolution brain venographies but has many other clinical applications. SWI is offered as a clinical package by Philips and Siemens but can be run on any manufacturer's machine at field strengths of 1.0 T, 1.5 T, 3.0 T and higher.

Jemris is an open source MRI sequence design and simulation framework written in C++.

<span class="mw-page-title-main">Real-time MRI</span> Type of MRI

Real-time magnetic resonance imaging (RT-MRI) refers to the continuous monitoring ("filming") of moving objects in real time. Because MRI is based on time-consuming scanning of k-space, real-time MRI was possible only with low image quality or low temporal resolution. Using an iterative reconstruction algorithm these limitations have recently been removed: a new method for real-time MRI achieves a temporal resolution of 20 to 30 milliseconds for images with an in-plane resolution of 1.5 to 2.0 mm. Real-time MRI promises to add important information about diseases of the joints and the heart. In many cases MRI examinations may become easier and more comfortable for patients.

<span class="mw-page-title-main">Magnetic resonance imaging of the brain</span>

Magnetic resonance imaging of the brain uses magnetic resonance imaging (MRI) to produce high quality two-dimensional or three-dimensional images of the brain and brainstem as well as the cerebellum without the use of ionizing radiation (X-rays) or radioactive tracers.

<span class="mw-page-title-main">Philip Batchelor</span> British mathematician

Philip Batchelor, was a Swiss-British academic in the fields of mathematics and medical imaging.

<span class="mw-page-title-main">Intravoxel incoherent motion</span> Concept and a method initially introduced and developed by Le Bihan et al

Intravoxel incoherent motion (IVIM) imaging is a concept and a method initially introduced and developed by Le Bihan et al. to quantitatively assess all the microscopic translational motions that could contribute to the signal acquired with diffusion MRI. In this model, biological tissue contains two distinct environments: molecular diffusion of water in the tissue, and microcirculation of blood in the capillary network (perfusion). The concept introduced by D. Le Bihan is that water flowing in capillaries mimics a random walk (Fig.1), as long as the assumption that all directions are represented in the capillaries is satisfied.

Harmonic phase (HARP) algorithm is a medical image analysis technique capable of extracting and processing motion information from tagged magnetic resonance image (MRI) sequences. It was initially developed by N. F. Osman and J. L. Prince at the Image Analysis and Communications Laboratory at Johns Hopkins University. The method uses spectral peaks in the Fourier domain of tagged MRI, calculating the phase images of their inverse Fourier transforms, which are called harmonic phase (HARP) images. The motion of material points through time is then tracked, under the assumption that the HARP value of a fixed material point is time-invariant. The method is fast and accurate, and has been accepted as one of the most popular tagged MRI analysis methods in medical image processing.

<span class="mw-page-title-main">Jürgen Hennig</span> German chemist and medical physicist (born 1951)

Jürgen Klaus Hennig is a German chemist and medical physicist. Internationally he is considered to be one of the pioneers of Magnetic Resonance Imaging for clinical diagnostics. He is the Scientific Director of the Department of Diagnostic Radiology and Chairman of the Magnetic Resonance Development and Application Center (MRDAC) at the University Medical Center Freiburg. In the year 2003 he was awarded the Max Planck Research Award in the category of Biosciences and Medicine.

Synthetic MRI is a simulation method in Magnetic Resonance Imaging (MRI), for generating contrast weighted images based on measurement of tissue properties. The synthetic (simulated) images are generated after an MR study, from parametric maps of tissue properties. It is thereby possible to generate several contrast weightings from the same acquisition. This is different from conventional MRI, where the signal acquired from the tissue is used to generate an image directly, often generating only one contrast weighting per acquisition. The synthetic images are similar in appearance to those normally acquired with an MRI scanner.

The history of magnetic resonance imaging (MRI) includes the work of many researchers who contributed to the discovery of nuclear magnetic resonance (NMR) and described the underlying physics of magnetic resonance imaging, starting early in the twentieth century. One researcher was American physicist Isidor Isaac Rabi who won the Nobel Prize in Physics in 1944 for his discovery of nuclear magnetic resonance, which is used in magnetic resonance imaging. MR imaging was invented by Paul C. Lauterbur who developed a mechanism to encode spatial information into an NMR signal using magnetic field gradients in September 1971; he published the theory behind it in March 1973.

An MRI artifact is a visual artifact in magnetic resonance imaging (MRI). It is a feature appearing in an image that is not present in the original object. Many different artifacts can occur during MRI, some affecting the diagnostic quality, while others may be confused with pathology. Artifacts can be classified as patient-related, signal processing-dependent and hardware (machine)-related.

<span class="mw-page-title-main">Portable magnetic resonance imaging</span>

Portable magnetic resonance imaging (MRI) is referred to the imaging provided by an MRI scanner that has mobility and portability. It provides MR imaging to the patient in-time and on-site, for example, in intensive care unit (ICU) where there is danger associated with moving the patient, in an ambulance, after a disaster rescue, or in a field hospital/medical tent.

Denis Le Bihan is a medical doctor, physicist, member of the Institut de France, member of the French Academy of Technologies and director since 2007 of NeuroSpin, an institution of the Atomic Energy and Alternative Energy Commission (CEA) in Saclay, dedicated to the study of the brain by magnetic resonance imaging (MRI) with a very high magnetic field. Denis Le Bihan has received international recognition for his outstanding work, introducing new imaging methods, particularly for the study of the human brain, as evidenced by the many international awards he has received, such as the Gold Medal of the International Society of Magnetic Resonance in Medicine (2001), the coveted Lounsbery Prize, the Louis D. Prize from the Institut de France, the prestigious Honda Prize (2012), the Louis-Jeantet Prize (2014), the Rhein Foundation Award (2021). His work has focused on the introduction, development and application of highly innovative methods, notably diffusion MRI.

Daniel Kevin Sodickson is an American physicist and an expert in the field of biomedical imaging. A past president and gold medalist of the International Society for Magnetic Resonance in Medicine, he is credited with foundational work in parallel magnetic resonance imaging (MRI), in which distributed arrays of detectors are used to gather magnetic resonance images at previously inaccessible speeds. Sodickson is an elected Fellow of the US National Academy of Inventors. He currently serves as Vice-Chair for Research in the Department of Radiology at New York University (NYU) Grossman School of Medicine, as Director of the department's Bernard and Irene Schwartz Center for Biomedical Imaging, as Principal Investigator of the Center for Advanced Imaging Innovation and Research, and as Co-Director of NYU's Tech4Health Institute.

Magnetic resonance fingerprinting (MRF) is methodology in quantitative magnetic resonance imaging (MRI) characterized by a pseudo-randomized acquisition strategy. It involves creating unique signal patterns or 'fingerprints' for different materials or tissues after which a pattern recognition algorithm matches these fingerprints with a predefined dictionary of expected signal patterns. This process translates the data into quantitative maps, revealing information about the magnetic properties being investigated.

References

  1. Hardy CJ, Darrow RD, Pauly JM, et al. (July 1998). "Interactive coronary MRI". Magnetic Resonance in Medicine. 40 (1): 105–11. doi:10.1002/mrm.1910400115. PMID   9660560. S2CID   25304785.
  2. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G (September 1991). "Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy". American Heart Journal. 122 (3 Pt 1): 795–801. doi:10.1016/0002-8703(91)90527-o. PMID   1877457.
  3. Hardy CJ, Darrow RD, Nieters EJ, et al. (May 1993). "Real-time acquisition, display, and interactive graphic control of NMR cardiac profiles and images". Magnetic Resonance in Medicine. 29 (5): 667–73. doi:10.1002/mrm.1910290514. PMID   8505903. S2CID   6302731.
  4. Hardy, Christopher J.; Cline, Harvey E. (1989). "Broadband nuclear magnetic resonance pulses with two-dimensional spatial selectivity". Journal of Applied Physics. 66 (4): 1513–6. Bibcode:1989JAP....66.1513H. doi: 10.1063/1.344411 .
  5. Hardy CJ, Cline HE, Giaquinto RO, Niendorf T, Grant AK, Sodickson DK (May 2006). "32-element receiver-coil array for cardiac imaging". Magnetic Resonance in Medicine. 55 (5): 1142–9. doi:10.1002/mrm.20870. PMC   2819007 . PMID   16596635.
  6. Hardy CJ, Giaquinto RO, Piel JE, et al. (November 2008). "128-channel body MRI with a flexible high-density receiver-coil array". Journal of Magnetic Resonance Imaging. 28 (5): 1219–25. doi:10.1002/jmri.21463. PMID   18972330. S2CID   20394600.
  7. Search Results for author Hardy CJ on PubMed .
  8. Google [ failed verification ]
  9. http://www.ipo.org/AM/Template.cfm?testparamhere=1&Template=/CM/ContentDisplay.cfm&ContentID=26134%5B%5D%5B%5D
  10. "Archive (1990-present)". Aps.org. 2011-07-27. Retrieved 2012-07-09.
  11. "College of Fellows". AIMBE. 2012-05-11. Archived from the original on 2013-10-20. Retrieved 2012-07-09.
  12. "Society Award Winners « ISMRM". Ismrm.org. Retrieved 2012-07-09.
  13. "Method for calculating wave velocities in blood vessels".
  14. "Patent US7977943 - Method and system for reconstructing images - Google Patents" . Retrieved 2012-07-09.