Climate oscillation

Last updated

A climate oscillation or climate cycle is any recurring cyclical oscillation within global or regional climate, and is a type of climate pattern. These fluctuations in atmospheric temperature, sea surface temperature, precipitation or other parameters can be quasi-periodic, often occurring on inter-annual, multi-annual, decadal, multidecadal, century-wide, millennial or longer timescales. They are not perfectly periodic and a Fourier analysis of the data does not give a sharp spectrum.

Oscillation repetitive variation of some measure about a central value

Oscillation is the repetitive variation, typically in time, of some measure about a central value or between two or more different states. The term vibration is precisely used to describe mechanical oscillation. Familiar examples of oscillation include a swinging pendulum and alternating current.

Climate Statistics of weather conditions in a given region over long periods

Climate is defined as the average state of everyday's weather condition over a period of 30 years. It is measured by assessing the patterns of variation in temperature, humidity, atmospheric pressure, wind, precipitation, atmospheric particle count and other meteorological variables in a given region over long periods of time. Climate differs from weather, in that weather only describes the short-term conditions of these variables in a given region.

A climate pattern is any recurring characteristic of the climate. Climate patterns can last tens of thousands of years, like the glacial and interglacial periods within ice ages, or repeat each year, like monsoons.

Contents

A prominent example is the El Niño Southern Oscillation, involving sea surface temperatures along a stretch of the equatorial Central and East Pacific Ocean and the western coast of tropical South America, but which affects climate worldwide.

Pacific Ocean Ocean between Asia and Australia in the west, the Americas in the east and Antarctica or the Southern Ocean in the south.

The Pacific Ocean is the largest and deepest of Earth's oceanic divisions. It extends from the Arctic Ocean in the north to the Southern Ocean in the south and is bounded by Asia and Australia in the west and the Americas in the east.

Records of past climate conditions are recovered through geological examination of proxies, found in glacier ice, sea bed sediment, tree ring studies or otherwise.

Geology The study of the composition, structure, physical properties, and history of Earths components, and the processes by which they are shaped.

Geology is an earth science concerned with the solid Earth, the rocks of which it is composed, and the processes by which they change over time. Geology can also include the study of the solid features of any terrestrial planet or natural satellite such as Mars or the Moon. Modern geology significantly overlaps all other earth sciences, including hydrology and the atmospheric sciences, and so is treated as one major aspect of integrated earth system science and planetary science.

Proxy (climate) Preserved physical characteristics allowing reconstruction of past climatic conditions

In the study of past climates ("paleoclimatology"), climate proxies are preserved physical characteristics of the past that stand in for direct meteorological measurements and enable scientists to reconstruct the climatic conditions over a longer fraction of the Earth's history. Reliable global records of climate only began in the 1880s, and proxies provide the only means for scientists to determine climatic patterns before record-keeping began.

Ice core Cylindrical sample drilled from an ice sheet

An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper, and an ice core contains ice formed over a range of years. Cores are drilled with hand augers or powered drills; they can reach depths of over two miles (3.2 km), and contain ice up to 800,000 years old.

Examples

Many oscillations on different time-scales have been found or hypothesized. Here is a list of known or proposed climatic oscillations. [1] [ additional citation(s) needed ]:

Madden–Julian oscillation

The Madden–Julian oscillation (MJO) is the largest element of the intraseasonal variability in the tropical atmosphere. It was discovered in 1971 by Roland Madden and Paul Julian of the American National Center for Atmospheric Research (NCAR). It is a large-scale coupling between atmospheric circulation and tropical deep atmospheric convection. Unlike a standing pattern like the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation is a traveling pattern that propagates eastward, at approximately 4 to 8 m/s, through the atmosphere above the warm parts of the Indian and Pacific oceans. This overall circulation pattern manifests itself most clearly as anomalous rainfall.

The quasi-biennial oscillation (QBO) is a quasiperiodic oscillation of the equatorial zonal wind between easterlies and westerlies in the tropical stratosphere with a mean period of 28 to 29 months. The alternating wind regimes develop at the top of the lower stratosphere and propagate downwards at about 1 km (0.6 mi) per month until they are dissipated at the tropical tropopause. Downward motion of the easterlies is usually more irregular than that of the westerlies. The amplitude of the easterly phase is about twice as strong as that of the westerly phase. At the top of the vertical QBO domain, easterlies dominate, while at the bottom, westerlies are more likely to be found. At the 30mb level, with regards to monthly mean zonal winds, the strongest recorded easterly was 29.55 m/s in November 2005, while the strongest recorded westerly was only 15.62 m/s in June 1995.

Stratosphere The layer of the atmosphere above the troposphere

The stratosphere is the second major layer of Earth's atmosphere, just above the troposphere, and below the mesosphere. The stratosphere is stratified (layered) in temperature, with warmer layers higher and cooler layers closer to the Earth; this increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet radiation by the ozone layer. This is in contrast to the troposphere, near the Earth's surface, where temperature decreases with altitude. The border between the troposphere and stratosphere, the tropopause, marks where this temperature inversion begins. Near the equator, the stratosphere starts at as high as 20 km, around 10 km at midlatitudes, and at about 7 km at the poles. Temperatures range from an average of −51 °C near the tropopause to an average of −15 °C near the mesosphere. Stratospheric temperatures also vary within the stratosphere as the seasons change, reaching particularly low temperatures in the polar night (winter). Winds in the stratosphere can far exceed those in the troposphere, reaching near 60 m/s in the Southern polar vortex.

Some natural periodicities in the sun exist, and these may or may not show up as periodicities in climate:

Solar cycle periodic change in the Suns activity

The solar cycle or solar magnetic activity cycle is the nearly periodic 11-year change in the Sun's activity and appearance.

Anomalies in oscillations sometimes occur when they coincide, as in the Arctic dipole anomaly (a combination of the Arctic and North Atlantic oscillations) and the longer-term Younger Dryas, a sudden non-linear cooling event that occurred at the onset of the current Holocene interglacial. In the case of volcanoes, large eruptions such as Mount Tambora in 1816, which led to the Year Without a Summer, typically cool the climate, especially when the volcano is located in the tropics. Around 70 000 years ago the Toba supervolcano eruption created an especially cold period during the ice age, leading to a possible genetic bottleneck in human populations. However, outgassing from large igneous provinces such as the Permian Siberian Traps can input carbon dioxide into the atmosphere, warming the climate. Triggering of other mechanisms, such as methane clathrate deposits as during the Paleocene-Eocene Thermal Maximum, increased the rate of climatic temperature change and oceanic extinctions.

Another longer-term near-millennial oscillation involves the Daansgard-Oeschger cycles, occurring on roughly 1,500-year cycles during the last glacial maximum. They may be related to the Holocene Bond events, and may involve factors similar to those responsible for Heinrich events.

Origins and causes

There are close correlations between Earth's climate oscillations and astronomical factors (barycenter changes, solar variation, cosmic ray flux, cloud albedo feedback, Milankovic cycles), and modes of heat distribution between the ocean-atmosphere climate system. In some cases, current, historical and paleoclimatological natural oscillations may be masked by significant volcanic eruptions, impact events, irregularities in climate proxy data, positive feedback processes or anthropogenic emissions of substances such as greenhouse gases. [9]

Effects

Extreme phases of short-term climate oscillations such as ENSO can result in characteristic patterns of floods and droughts (including megadroughts), monsoonal disruption and extreme temperatures in the form of heat waves and cold waves. Shorter-term climate oscillations typically do not directly result in longer-term climate change in temperatures. However, the effects of underlying climate trends such as recent global warming and oscillations can be cumulative to global temperature, producing shorter-term fluctuations in the instrumental and satellite temperature records.

Collapses of past civilizations such as the Maya may be related to cycles of precipitation, especially drought, that in this example also correlates to the Western Hemisphere Warm Pool.

One example of possible correlations between factors affecting the climate and global events, popular with the media, is a 2003 study on the correlation between wheat prices and sunspot numbers. [12]

Analysis and uncertainties

Radiative forcings and other factors in a climate oscillation must obey the laws of atmospheric thermodynamics. However, because Earth's climate is inherently a complex system, simple Fourier analysis or climate modelling often does not create a perfect replication of the observed or inferred conditions. No climate cycle is found to be perfectly periodic, although the Milankovich cycles (based on multiple superimposed orbital cycles and Earth's precession) are quite close to being periodic (perhaps almost periodic?).

One difficulty in detecting climate cycles is that the Earth's climate has been changing in non-cyclic ways over most paleoclimatological timescales. For instance, we are now in a period of anthropogenic global warming. In a larger timeframe, the Earth is emerging from the latest ice age, cooling from the Holocene climatic optimum and warming from the so-called "Little Ice Age", which means that climate has been constantly changing over the last 15,000 years or so. During warm periods, temperature fluctuations are often of a lesser amplitude. The Pleistocene period, dominated by repeated glaciations, developed out of more stable conditions in the Miocene and Pliocene climate. Holocene climate has been relatively stable. All of these changes complicate the task of looking for cyclical behavior in the climate.

Positive feedback, negative feedback, and ecological inertia from the land-ocean-atmosphere system often attenuate or reverse smaller effects, whether from orbital forcings, solar variations or changes in concentrations of greenhouse gases. Most climatologists recognize the existence of various tipping points that push small forcings beyond a certain threshold that makes the change irreversible while the forcings are still in place. Certain feedbacks involving processes such as clouds are also uncertain; for contrails, natural cirrus clouds, oceanic dimethyl sulfide and a land-based equivalent, competing theories exist concerning effects on climatic temperatures, for example contrasting the Iris hypothesis and CLAW hypothesis.

Through geologic and historical time

Climate change over the past 65 million years, using proxy data including Oxygen-18 ratios from foraminifera. 65 Myr Climate Change.png
Climate change over the past 65 million years, using proxy data including Oxygen-18 ratios from foraminifera.
Temperature change over the past 12 000 years, from various sources. The thick black curve is an average. Holocene Temperature Variations.png
Temperature change over the past 12 000 years, from various sources. The thick black curve is an average.

Various climate forcings are typically in flux throughout geologic time, and some processes of the Earth's temperature may be self-regulating. For example, during the Snowball Earth period, large glacial ice sheets spanned to Earth's equator, covering nearly its entire surface, and very high albedo created extremely low temperatures, while the accumulation of snow and ice likely removed carbon dioxide through atmospheric deposition. However, the absence of plant cover to absorb atmospheric CO2 emitted by volcanoes meant that the greenhouse gas could accumulate in the atmosphere. There was also an absence of exposed silicate rocks, which use CO2 when they undergo weathering. This created a warming that later melted the ice and brought Earth's temperature back to equilibrium. During the following eons of the Paleozoic, cosmic ray flux and occasional nearby supernova explosions (one hypothesis for the cause of the Ordovician–Silurian extinction event) and gamma ray bursts may have induced ice ages or other sudden climate changes.

Throughout the Cenozoic, multiple climate forcings led to warming and cooling of the atmosphere, which led to the early formation of the Antarctic ice sheet, subsequent melting, and its later reglaciation. The temperature changes occurred somewhat suddenly, at carbon dioxide concentrations of about 600760 ppm and temperatures approximately 4 °C warmer than today. During the Pleistocene, cycles of glaciations and interglacials occurred on cycles of roughly 100,000 years, but may stay longer within an interglacial when orbital eccentricity approaches zero, as during the current interglacial. Previous interglacials such as the Eemian phase created temperatures higher than today, higher sea levels, and some partial melting of the West Antarctic ice sheet. The warmest part of the current interglacial occurred during the early Holocene Optimum, when temperatures were a few degrees Celsius warmer than today, and a strong African Monsoon created grassland conditions in the Sahara during the Neolithic Subpluvial. Since that time, several cooling events have occurred, including:

In contrast, several warm periods have also taken place, and they include but are not limited to:

Certain effects have occurred during these cycles. For example, during the Medieval Warm Period, the American Midwest was in drought, including the Sand Hills of Nebraska which were active sand dunes. The black death plague of Yersinia pestis also occurred during Medieval temperature fluctuations, and may be related to changing climates.

Given that records of solar activity are accurate, solar activity may have contributed to part of the modern warming that peaked in the 1930s, in addition to the 60-year temperature cycles that result in roughly 0.5 °C of warming during the increasing temperature phase. However, solar cycles fail to account for warming observed since the 1980s to the present day [ citation needed ]. Events such as the opening of the Northwest Passage and recent record low ice minima of the modern Arctic shrinkage have not taken place for at least several centuries, as early explorers were all unable to make an Arctic crossing, even in summer. Shifts in biomes and habitat ranges are also unprecedented, occurring at rates that do not coincide with known climate oscillations [ citation needed ]. The extinction of many tropical amphibian species, especially in cloud forests, have been attributed to changing global temperatures, fungal disease and possible influence from unusually extreme phases of oceanic climate oscillations.

See also

Related Research Articles

Holocene The current geological epoch, covering the last 11,700 years

The Holocene is the current geological epoch. It began approximately 11,650 cal years before present, after the last glacial period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene has been identified with the current warm period, known as MIS 1. It is considered by some to be an interglacial period within the Pleistocene Epoch.

Ice age Period of long-term reduction in temperature of Earths surface and atmosphere

An ice age is a long period of reduction in the temperature of the Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth is currently in the Quaternary glaciation, known in popular terminology as the Ice Age. Individual pulses of cold climate are termed "glacial periods", and intermittent warm periods are called "interglacials", with both climatic pulses part of the Quaternary or other periods in Earth's history.

Climate change Change in the statistical distribution of weather patterns for an extended period

Climate change occurs when changes in Earth's climate system result in new weather patterns that last for at least a few decades, and maybe for millions of years. The climate system is comprised of five interacting parts, the atmosphere (air), hydrosphere (water), cryosphere, biosphere, and lithosphere. The climate system receives nearly all of its energy from the sun, with a relatively tiny amount from earth's interior. The climate system also gives off energy to outer space. The balance of incoming and outgoing energy, and the passage of the energy through the climate system, determines Earth's energy budget. When the incoming energy is greater than the outgoing energy, earth's energy budget is positive and the climate system is warming. If more energy goes out, the energy budget is negative and earth experiences cooling.

Climatology The scientific study of climate, defined as weather conditions averaged over a period of time

Climatology or climate science is the scientific study of climate, scientifically defined as weather conditions averaged over a period of time. This modern field of study is regarded as a branch of the atmospheric sciences and a subfield of physical geography, which is one of the Earth sciences. Climatology now includes aspects of oceanography and biogeochemistry. Basic knowledge of climate can be used within shorter term weather forecasting using analog techniques such as the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation (MJO), the North Atlantic oscillation (NAO), the Northern Annular Mode (NAM) which is also known as the Arctic oscillation (AO), the Northern Pacific (NP) Index, the Pacific decadal oscillation (PDO), and the Interdecadal Pacific Oscillation (IPO). Climate models are used for a variety of purposes from study of the dynamics of the weather and climate system to projections of future climate. Weather is known as the condition of the atmosphere over a period of time, while climate has to do with the atmospheric condition over an extended to indefinite period of time.

Global cooling

Global cooling was a conjecture during the 1970s of imminent cooling of the Earth's surface and atmosphere culminating in a period of extensive glaciation. Press reports at the time did not accurately reflect the scientific literature. The current scientific opinion on climate change is that the Earth underwent global warming throughout the 20th century and continues to warm.

Dansgaard–Oeschger event

Dansgaard–Oeschger events are rapid climate fluctuations that occurred 25 times during the last glacial period. Some scientists say that the events occur quasi-periodically with a recurrence time being a multiple of 1,470 years, but this is debated. The comparable climate cyclicity during the Holocene is referred to as Bond events.

This article serves as a glossary of climate change terms. It lists terms that are related to global warming.

Pacific decadal oscillation A robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin

The Pacific Decadal Oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of 20°N. Over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal time scales. There is evidence of reversals in the prevailing polarity of the oscillation occurring around 1925, 1947, and 1977; the last two reversals corresponded with dramatic shifts in salmon production regimes in the North Pacific Ocean. This climate pattern also affects coastal sea and continental surface air temperatures from Alaska to California.

Global temperature record

The global temperature record shows the fluctuations of the temperature of the atmosphere and the oceans through various spans of time. The most detailed information exists since 1850, when methodical thermometer-based records began. There are numerous estimates of temperatures since the end of the Pleistocene glaciation, particularly during the current Holocene epoch. Older time periods are studied by paleoclimatology.

The Geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (109) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.

The Holocene Climate Optimum (HCO) was a warm period during roughly the interval 9,000 to 5,000 years BP, with a thermal maximum around 8000 years BP. It has also been known by many other names, such as Altithermal, Climatic Optimum, Holocene Megathermal, Holocene Optimum, Holocene Thermal Maximum, Hypsithermal, and Mid-Holocene Warm Period.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

Interglacial interval of time within an ice age that is marked by warmer temperatures

An interglacial period is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial began at the end of the Pleistocene, about 11,700 years ago.

Quaternary glaciation

The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma, and is ongoing. Although geologists describe the entire time period as an "ice age", in popular culture the term "ice age" is usually associated with just the most recent glacial period. Since earth still has ice sheets, geologists consider the Quaternary glaciation to be ongoing, with earth now experiencing an interglacial period.

Atlantic multidecadal oscillation

The Atlantic Multidecadal Oscillation (AMO) is a climate cycle that affects the sea surface temperature (SST) of the North Atlantic Ocean based on different modes on multidecadal timescales. While there is some support for this mode in models and in historical observations, controversy exists with regard to its amplitude, and in particular, the attribution of sea surface temperature change to natural or anthropogenic causes, especially in tropical Atlantic areas important for hurricane development. The Atlantic multidecadal oscillation is also connected with shifts in hurricane activity, rainfall patterns and intensity, and changes in fish populations.

This is a list of climate change topics.

Deglaciation describes the transition from full glacial conditions during ice ages, to warm interglacials, characterized by global warming and sea level rise due to change in continental ice volume. Thus, it refers to the retreat of a glacier, an ice sheet or frozen surface layer, and the resulting exposure of the Earth's surface. The decline of the cryosphere due to ablation can occur on any scale from global to localized to a particular glacier. After the Last Glacial Maximum, the last deglaciation begun, which lasted until the early Holocene. Around much of Earth, deglaciation during the last 100 years has been accelerating as a result of climate change, partly brought on by anthropogenic changes to greenhouse gases.

Climate state

Climate state describes a state of climate on Earth and similar terrestrial planets based on a thermal energy budget, such as the greenhouse or icehouse climate state.

Marine Isotope Stage 5 A Marine Isotope Stage in the geologic temperature record, between 130,000 and 80,000 years ago

Marine Isotope Stage 5 or MIS 5 is a Marine Isotope Stage in the geologic temperature record, between 130,000 and 80,000 years ago. Sub-stage MIS 5e, called the Eemian or Ipswichian, covers the last major interglacial period before the Holocene, which extends to the present day. Interglacial periods which occurred during the Pleistocene are investigated to better understand present and future climate change. Thus, the present interglacial, the Holocene, is compared with MIS 5 or the interglacials of Marine Isotope Stage 11.

References

  1. "El Niño & Other Oscillations". Woods Hole Oceanographic Institution. Retrieved 2019-04-06.
  2. "What is the MJO, and why do we care? | NOAA Climate.gov". www.climate.gov. Retrieved 2019-04-06.
  3. Baldwin, M. P.; Gray, L. J.; Dunkerton, T. J.; Hamilton, K.; Haynes, P. H.; Randel, W. J.; Holton, J. R.; Alexander, M. J.; Hirota, I. (2001). "The quasi-biennial oscillation". Reviews of Geophysics. 39 (2): 179–229. doi:10.1029/1999RG000073.
  4. Wang, Chunzai (2018). "A review of ENSO theories". National Science Review. 5 (6): 813–825. doi:10.1093/nsr/nwy104. ISSN   2095-5138.
  5. Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J. (2017). "Heartbeat of the Southern Oscillation explains ENSO climatic resonances". Journal of Geophysical Research: Oceans. 122 (8): 6746–6772. doi:10.1002/2017JC012892. ISSN   2169-9291.
  6. Newman, Matthew; Alexander, Michael A.; Ault, Toby R.; Cobb, Kim M.; Deser, Clara; Di Lorenzo, Emanuele; Mantua, Nathan J.; Miller, Arthur J.; Minobe, Shoshiro (2016). "The Pacific Decadal Oscillation, Revisited". Journal of Climate. 29 (12): 4399–4427. doi:10.1175/JCLI-D-15-0508.1. ISSN   0894-8755.
  7. "Interdecadal Pacific Oscillation". NIWA. 2016-01-19. Retrieved 2019-04-06.
  8. Kuijpers, Antoon; Bo Holm Jacobsen; Seidenkrantz, Marit-Solveig; Knudsen, Mads Faurschou (2011). "Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years". Nature Communications. 2: 178. doi:10.1038/ncomms1186. ISSN   2041-1723.
  9. 1 2 Scafetta, Nicola (May 15, 2010). "Empirical evidence for a celestial origin of the climate oscillations" (PDF). Journal of Atmospheric and Solar-Terrestrial Physics. 72: 951–970. arXiv: 1005.4639 . Bibcode:2010JASTP..72..951S. doi:10.1016/j.jastp.2010.04.015 . Retrieved 20 July 2011.
  10. 1 2 3 4 https://pubs.usgs.gov/fs/fs-0095-00/fs-0095-00.pdf United States Geological Survey - The Sun and Climate
  11. National Institutes of Health - The sunspot cycle no. 24 in relation to long term solar activity variation
  12. Sunspot activity impacts on crop success New Scientist, 18 Nov. 2004