Combined cycle hydrogen power plant

Last updated

Intermountain power plant is to be retrofitted for a mixed hydrogen/natural gas power plant in 2025. By 2045, 100% hydrogen Intermountain Power Plant, Utah.jpg
Intermountain power plant is to be retrofitted for a mixed hydrogen/natural gas power plant in 2025. By 2045, 100% hydrogen

A Combined cycle hydrogen power plant is a power plant that uses hydrogen in a combined cycle power plant. A green hydrogen combined cycle power plant is only about 40% efficient, after electrolysis and reburning for electricity, and is a viable option for energy storage for longer term compared to battery storage. Natural gas power plants could be converted to hydrogen power plants with minimal renovation or do a combined mix of natural gas and hydrogen. [2] [3]

Contents

Retrofitting natural gas power plants

Natural gas power plants could be designed with a transition to hydrogen in mind by having wider inlet pipes to the burner to increase flow rates because hydrogen is less dense than natural gas, and have the right material because hydrogen can cause hydrogen embrittlement.

Limitations

Current electrolysis plants are not capable of providing the scale of hydrogen that is needed to provide for a large scale power plant. On site electrolysis may be needed, then storing large amounts of hydrogen could take up a lot of space if it is only compressed hydrogen and not Liquid hydrogen. Hydrogen embrittlement could happen in pipelines, but 316L stainless steel pipelines could handle compressed hydrogen above 50 Bar (unit), which is what compressed natural gas is piped at, or wider pipelines could be built for hydrogen. Polyethylene or fiber-reinforced polymer pipelines coule also be used.

Nitrous oxide

When hydrogen is burned as a fuel no carbon dioxide is produced, but more nitrous oxide is produced because of the higher flame temperature from hydrogen, a selective catalytic reduction process could be implemented to break NO₂ down into just nitrogen and water. The exhaust from a burning hydrogen reaction is water vapor and could be used as a diluent to lower the high burning temp that creates the nitrous oxide.

Corrosion

Corrosion of the turbine from the water vapor from the hydrogen flame could reduce plant life or parts may need to be replaced more often.

Fuel handling

Hydrogen is the smallest and lightest element and can leak more easily at connection points and joints. Hydrogen diffuses quickly mitigating explosions. A hydrogen flame is also not as visible as a standard flame.

Transition to a renewable power grid

Renewable and conventional energy production in Germany over two weeks in 2022. In hours with low wind and PV production, hard coal and gas fill the gap. Nuclear and biomass show almost no flexibility. PV follows the increased consumption during daytime hours but varies seasonally. Variable renewable energy.svg
Renewable and conventional energy production in Germany over two weeks in 2022. In hours with low wind and PV production, hard coal and gas fill the gap. Nuclear and biomass show almost no flexibility. PV follows the increased consumption during daytime hours but varies seasonally.

Wind and solar power are variable renewable energy sources that aren't as consistent as base load energy. Hydrogen could help renewables by capturing excess energy, with electrolysis, when they produce too much, and fill the gaps with that energy when they aren't producing as much.

See also

Related Research Articles

<span class="mw-page-title-main">Energy storage</span> Captured energy for later usage

Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an accumulator or battery. Energy comes in multiple forms including radiation, chemical, gravitational potential, electrical potential, electricity, elevated temperature, latent heat and kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms.

Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as a fuel. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII.

<span class="mw-page-title-main">Alternative fuel</span> Fuels from sources other than fossil fuels

Alternative fuels, also known as non-conventional and advanced fuels, are fuels derived from sources other than petroleum. Alternative fuels include gaseous fossil fuels like propane, natural gas, methane, and ammonia; biofuels like biodiesel, bioalcohol, and refuse-derived fuel; and other renewable fuels like hydrogen and electricity.

<span class="mw-page-title-main">Hydrogen economy</span> Using hydrogen to decarbonize sectors which are hard to electrify

The hydrogen economy is an umbrella term that draws together the roles hydrogen can play alongside low-carbon electricity to decarbonize those sectors and activities which may be technically difficult to decarbonize through other means, or where cheaper and more energy-efficient clean solutions are not available. In this context, hydrogen economy encompasses hydrogen's production through to end-uses in ways that substantively contribute to phasing-out fossil fuels and limiting climate change.

<span class="mw-page-title-main">Sabatier reaction</span> Methanation process of carbon dioxide with hydrogen

The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures and pressures in the presence of a nickel catalyst. It was discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens in 1897. Optionally, ruthenium on alumina makes a more efficient catalyst. It is described by the following exothermic reaction:

<span class="mw-page-title-main">Fossil fuel power station</span> Facility that burns fossil fuels to produce electricity

A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.

<span class="mw-page-title-main">Grid energy storage</span> Large scale electricity supply management

Grid energy storage is a collection of methods used for energy storage on a large scale within an electrical power grid. Electrical energy is stored during times when electricity is plentiful and inexpensive or when demand is low, and later returned to the grid when demand is high, and electricity prices tend to be higher.

<span class="mw-page-title-main">Water splitting</span> Chemical reaction

Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen:

<span class="mw-page-title-main">Methanol economy</span>

The methanol economy is a suggested future economy in which methanol and dimethyl ether replace fossil fuels as a means of energy storage, ground transportation fuel, and raw material for synthetic hydrocarbons and their products. It offers an alternative to the proposed hydrogen economy or ethanol economy, although these concepts are not exclusive. Methanol can be produced from a variety of sources including fossil fuels as well as agricultural products and municipal waste, wood and varied biomass. It can also be made from chemical recycling of carbon dioxide.

<span class="mw-page-title-main">Industrial gas</span> Gaseous materials produced for use in industry

Industrial gases are the gaseous materials that are manufactured for use in industry. The principal gases provided are nitrogen, oxygen, carbon dioxide, argon, hydrogen, helium and acetylene, although many other gases and mixtures are also available in gas cylinders. The industry producing these gases is also known as industrial gas, which is seen as also encompassing the supply of equipment and technology to produce and use the gases. Their production is a part of the wider chemical Industry.

Hydrogen gas is produced by several industrial methods. Fossil fuels are the dominant source of hydrogen. As of 2020, the majority of hydrogen (~95%) is produced by steam reforming of natural gas and other light hydrocarbons, and partial oxidation of heavier hydrocarbons. Other methods of hydrogen production include biomass gasification and methane pyrolysis. Methane pyrolysis and water electrolysis can use any source of electricity including renewable energy.

Hydrogen technologies are technologies that relate to the production and use of hydrogen as a part hydrogen economy. Hydrogen technologies are applicable for many uses.

<span class="mw-page-title-main">Hybrid power</span> Combinations between different technologies to generate electric power

Hybrid power are combinations between different technologies to produce power.

<span class="mw-page-title-main">Gas-fired power plant</span> One or more generators which convert natural gas into electricity

A gas-fired power plant, sometimes referred to as gas-fired power station, natural gas power plant, or methane gas power plant, is a thermal power station that burns natural gas to generate electricity. Gas-fired power plants generate almost a quarter of world electricity and are significant sources of greenhouse gas emissions. However, they can provide seasonal, dispatchable energy generation to compensate for variable renewable energy deficits, where hydropower or interconnectors are not available. In the early 2020s batteries became competitive with gas peaker plants.

<span class="mw-page-title-main">Hydrogen infrastructure</span>

A hydrogen infrastructure is the infrastructure of hydrogen pipeline transport, points of hydrogen production and hydrogen stations for distribution as well as the sale of hydrogen fuel, and thus a crucial prerequisite before a successful commercialization of automotive fuel cell technology.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

Carbon-neutral fuel is fuel which produces no net-greenhouse gas emissions or carbon footprint. In practice, this usually means fuels that are made using carbon dioxide (CO2) as a feedstock. Proposed carbon-neutral fuels can broadly be grouped into synthetic fuels, which are made by chemically hydrogenating carbon dioxide, and biofuels, which are produced using natural CO2-consuming processes like photosynthesis.

Power-to-gas is a technology that uses electric power to produce a gaseous fuel. When using surplus power from wind generation, the concept is sometimes called windgas.

<span class="mw-page-title-main">Power-to-X</span> Storing surplus electricity production in chemical form

Power-to-X are electricity conversion, energy storage, and reconversion pathways from surplus renewable energy. Power-to-X conversion technologies allow for the decoupling of power from the electricity sector for use in other sectors, possibly using power that has been provided by additional investments in generation. The term is widely used in Germany and may have originated there.

A hydrogen fuel cell power plant is a type of fuel cell power plant which uses a hydrogen fuel cell to generate electricity for the power grid. They are larger in scale than backup generators such as the Bloom Energy Server and can be up to 60% efficient in converting hydrogen to electricity. There is little to no Nitrous oxide or Sulfur oxides produced in the fuel cell process, which is produced in the process of a combined cycle hydrogen power plant. If the hydrogen could be produced with electrolysis also known as green hydrogen, then this could be a solution to the energy storage problem of renewable energy.

References

  1. Puko, Timothy (1 May 2023). "This power plant offers a peek into the future". The Washington Post. Retrieved 5 October 2023.
  2. Mulder, Sebastiaan (29 October 2021). "Ready for the Energy Transition: Hydrogen Considerations for Combined Cycle Power Plants". POWER Magazine. Retrieved 5 October 2023.
  3. Leigh Collins (29 July 2021). "Why hydrogen-fired power plants 'will play a major role in the energy transition'". Recharge. Retrieved 5 October 2023.
  4. "Flexible Power Plant Operation to Enable High Renewable Energy Penetration". IESR. 15 June 2022. Retrieved 21 November 2022.