Comparison of wireless data standards

Last updated

A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.

Contents

Standards can be grouped as follows in increasing range order:

Personal area network (PAN) systems are intended for short range communication between devices typically controlled by a single person. Some examples include wireless headsets for mobile phones or wireless heart rate sensors communicating with a wrist watch. Some of these technologies include standards such as ANT UWB, Bluetooth, Zigbee, and Wireless USB.

Wireless Sensor Networks (WSN / WSAN) are, generically, networks of low-power, low-cost devices that interconnect wirelessly to collect, exchange, and sometimes act-on data collected from their physical environments - "sensor networks". Nodes typically connect in a star or mesh topology. While most individual nodes in a WSAN are expected to have limited range (Bluetooth, Zigbee, 6LoWPAN, etc.), particular nodes may be capable of more expansive communications (Wi-Fi, Cellular networks, etc.) and any individual WSAN can span a wide geographical range. An example of a WSAN would be a collection of sensors arranged throughout an agricultural facility to monitor soil moisture levels, report the data back to a computer in the main office for analysis and trend modeling, and maybe turn on automatic watering spigots if the level is too low.

For wider area communications, wireless local area network (WLAN) is used. WLANs are often known by their commercial product name Wi-Fi. These systems are used to provide wireless access to other systems on the local network such as other computers, shared printers, and other such devices or even the internet. Typically a WLAN offers much better speeds and delays within the local network than an average consumer's Internet access. Older systems that provide WLAN functionality include DECT and HIPERLAN. These however are no longer in widespread use. One typical characteristic of WLANs is that they are mostly very local, without the capability of seamless movement from one network to another.

Cellular networks or WAN are designed for citywide/national/global coverage areas and seamless mobility from one access point (often defined as a base station) to another allowing seamless coverage for very wide areas. Cellular network technologies are often split into 2nd generation 2G, 3G and 4G networks. Originally 2G networks were voice centric or even voice only digital cellular systems (as opposed to the analog 1G networks). Typical 2G standards include GSM and IS-95 with extensions via GPRS, EDGE and 1xRTT, providing Internet access to users of originally voice centric 2G networks. Both EDGE and 1xRTT are 3G standards, as defined by the ITU, but are usually marketed as 2.9G due to their comparatively low speeds and high delays when compared to true 3G technologies.

True 3G systems such as EV-DO, W-CDMA (including HSPA and HSPA+) provide combined circuit switched and packet switched data and voice services from the outset, usually at far better data rates than 2G networks with their extensions. All of these services can be used to provide combined mobile voice access and Internet access at remote locations.

4G networks provide even higher bitrates and many architectural improvements, which are not necessarily visible to the consumer. The current 4G systems that are deployed widely are WIMAX and LTE. The two are pure packet based networks without traditional voice circuit capabilities. These networks provide voice services via VoIP or VoLTE.

Some systems are designed for point-to-point line-of-sight communications, once two such nodes get too far apart they can no longer communicate. Other systems are designed to form a wireless mesh network using one of a variety of routing protocols. In a mesh network, when nodes get too far apart to communicate directly, they can still communicate indirectly through intermediate nodes.

Standards

The following standards are included in this comparison.

Wireless wide area network (WWAN)

Wireless local area network (WLAN)

Wireless personal area network (WPAN) and most wireless sensor actor networks (WSAN)

Overview

Comparison of mobile Internet access methods
Common
Name
FamilyPrimary UseRadio Tech Downstream
(Mbit/s)
Upstream
(Mbit/s)
Notes
HSPA+ 3GPP Mobile Internet CDMA/TDMA/FDD
MIMO
21
42
84
672
5.8
11.5
22
168
HSPA+ is widely deployed. Revision 11 of the 3GPP states that HSPA+ is expected to have a throughput capacity of 672 Mbit/s.
LTE 3GPP Mobile Internet OFDMA/TDMA/MIMO/SC-FDMA/for LTE-FDD/for LTE-TDD 100 Cat3
150 Cat4
300 Cat5
25065 Cat17
1658 Cat19
(in 20 MHz FDD) [1]
50 Cat3/4
75 Cat5
2119 Cat17
13563 Cat19
(in 20 MHz FDD) [1]
LTE-Advanced Pro offers rates in excess of 3 Gbit/s to mobile users.
WiMax rel 1 802.16 WirelessMAN MIMO-SOFDMA 37 (10 MHz TDD)17 (10 MHz TDD)With 2x2 MIMO. [2]
WiMax rel 1.5 802.16-2009 WirelessMAN MIMO-SOFDMA 83 (20 MHz TDD)
141 (2x20 MHz FDD)
46 (20 MHz TDD)
138 (2x20 MHz FDD)
With 2x2 MIMO.Enhanced with 20 MHz channels in 802.16-2009 [2]
WiMAX rel 2.0 802.16m WirelessMAN MIMO-SOFDMA 2x2 MIMO
110 (20 MHz TDD)
183 (2x20 MHz FDD)
4x4 MIMO
219 (20 MHz TDD)
365 (2x20 MHz FDD)
2x2 MIMO
70 (20 MHz TDD)
188 (2x20 MHz FDD)
4x4 MIMO
140 (20 MHz TDD)
376 (2x20 MHz FDD)
Also, low mobility users can aggregate multiple channels to get a download throughput of up to 1 Gbit/s [2]
Flash-OFDM Flash-OFDMMobile Internet
mobility up to 200 mph (350 km/h)
Flash-OFDM 5.3
10.6
15.9
1.8
3.6
5.4
Mobile range 30 km (18 miles)
Extended range 55 km (34 miles)
HIPERMAN HIPERMANMobile Internet OFDM 56.9
Wi-Fi 802.11
(11ax)
Wireless LAN OFDM/OFDMA/CSMA/MIMO/MU-MIMO/Half duplex 9600 Wi-Fi 6

Antenna, RF front end enhancements and minor protocol timer tweaks have helped deploy long range P2P networks compromising on radial coverage, throughput and/or spectra efficiency (310 km & 382 km)

iBurst 802.20 Mobile Internet HC-SDMA/TDD/MIMO 9536Cell Radius: 3–12 km
Speed: 250 km/h
Spectral Efficiency: 13 bits/s/Hz/cell
Spectrum Reuse Factor: "1"
EDGE Evolution GSM Mobile Internet TDMA/FDD 1.60.5 3GPP Release 7
UMTS W-CDMA
HSPA (HSDPA+HSUPA)
3GPP Mobile Internet CDMA/FDD

CDMA/FDD/MIMO
0.384
14.4
0.384
5.76
HSDPA is widely deployed. Typical downlink rates today 2 Mbit/s, ~200 kbit/s uplink; HSPA+ downlink up to 56 Mbit/s.
UMTS-TDD 3GPP Mobile Internet CDMA/TDD 16Reported speeds according to IPWireless using 16QAM modulation similar to HSDPA+HSUPA
EV-DO  Rel. 0
EV-DO Rev.A
EV-DO Rev.B
3GPP2 Mobile Internet CDMA/FDD 2.45
3.1
4.9xN
0.15
1.8
1.8xN
Rev B note: N is the number of 1.25 MHz carriers used. EV-DO is not designed for voice, and requires a fallback to 1xRTT when a voice call is placed or received.

Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennas, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still). Usually the bandwidth is shared between several terminals. The performance of each technology is determined by a number of constraints, including the spectral efficiency of the technology, the cell sizes used, and the amount of spectrum available. For more information, see Comparison of wireless data standards .

For more comparison tables, see bit rate progress trends, comparison of mobile phone standards, spectral efficiency comparison table and OFDM system comparison table.

Peak bit rate and throughput

When discussing throughput, there is often a distinction between the peak data rate of the physical layer, the theoretical maximum data throughput and typical throughput.

The peak bit rate of the standard is the net bit rate provided by the physical layer in the fastest transmission mode (using the fastest modulation scheme and error code), excluding forward error correction coding and other physical layer overhead.

The theoretical maximum throughput for end user is clearly lower than the peak data rate due to higher layer overheads. Even this is never possible to achieve unless the test is done under perfect laboratory conditions.

The typical throughput is what users have experienced most of the time when well within the usable range to the base station. The typical throughput is hard to measure, and depends on many protocol issues such as transmission schemes (slower schemes are used at longer distance from the access point due to better redundancy), packet retransmissions and packet size. The typical throughput is often even lower because of other traffic sharing the same network or cell, interference or even the fixed line capacity from the base station onwards being limited.

Note that these figures cannot be used to predict the performance of any given standard in any given environment, but rather as benchmarks against which actual experience might be compared.

Bit rate (Mbit/s)
StandardPeak DownlinkPeak UplinkApproximate Maximum Range in MetersTypical Downlink throughput
CDMA2000 1xRTT 0.30720.1536290000.125
CDMA2000 EV-DO Rev. 0 2.45800.1536290001[ citation needed ]
CDMA2000 EV-DO Rev. A 3.11.8290002[ citation needed ]
CDMA2000 EV-DO Rev. B 4.91.829000
GSM GPRS Class 100.08560.0428260000.014[ citation needed ]
GSM EDGE type 20.47360.4736260000.034[ citation needed ]
GSM Evolved EDGE 1.89440.947226000
UMTS W-CDMA R990.38400.3840290000.195[ citation needed ]
UMTS W-CDMA HSDPA 14.40.3840200000 [3] 2[ citation needed ]
UMTS W-CDMA HSUPA 14.45.76200000 [3]
UMTS W-CDMA HSPA+ 16822200000 [3]
UMTS-TDD 16 [4] 16
LTE 326.486.4
iBurst: iBurst 24812000>2
Flash-OFDM: Flash-OFDM 5.31.829000avg 2.5[ citation needed ]
WiMAX: 802.16e 70706400>10[ citation needed ]
WiFi: 802.11a 54543020
WiFi: 802.11b 1111305[ citation needed ]
WiFi: 802.11g 54543020[ citation needed ]
WiFi: 802.11n 60060050
WiFi: 802.11ac 1,3001,30050
WiFi: 802.11ad 7,0007,0003.3
WiFi: 802.11ax 10,00010,000

Typical spectral use

Frequency

Allocated frequencies
StandardFrequenciesSpectrum Type
UMTS FDD850 MHz, 900 MHz, 2.0, 1.9/2.1, 2.1, and 1.7/2.1 GHzLicensed
UMTS-TDD450, 850 MHz, 1.9, 2, 2.5, and 3.5 GHz [5]
2 GHz
Licensed (Cellular, 3G TDD, BRS/IMT-ext, FWA)
Unlicensed (see note)
CDMA2000 (inc. EV-DO, 1xRTT)450, 850, 900 MHz 1.7, 1.8, 1.9, and 2.1 GHzLicensed (Cellular/PCS/3G/AWS)
EDGE/GPRS850 MHz, 900 MHz, 1.8 GHz, and 1.9 GHzLicensed (Cellular/PCS/PCN)
iBurst1.8, 1.9, and 2.1 GHzLicensed
Flash-OFDM450 and 870 MHzLicensed
Bluetooth/BLE2.4 GHzUnlicensed ISM
Low Rate WPAN (802.15.4)868 MHz, 915 MHz, 2.4 GHzUnlicensed ISM
802.112.4, 3.6, 4.9, 5.0, 5.2, 5.6, 5.8, 5.9 and 60 GHz [6] Unlicensed ISM
WiMax (802.16e)2.3, 2.5, 3.5, 3.7, and 5.8 GHzLicensed
Wireless USB, UWB3.1 to 10.6 GHzUnlicensed Ultrawideband
VEmesh*868 MHz, 915 MHz, and 953 MHzUnlicensed ISM
EnOcean*868.3 MHzUnlicensed ISM

See also

Related Research Articles

IEEE 802.15 is a working group of the Institute of Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee which specifies Wireless Specialty Networks (WSN) standards. The working group was formerly known as Working Group for Wireless Personal Area Networks.

<span class="mw-page-title-main">IEEE 802.11</span> Specifications for Wi-Fi wireless networks

IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of media access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires. IEEE 802.11 is also a basis for vehicle-based communication networks with IEEE 802.11p.

<span class="mw-page-title-main">Wireless network</span> Network not fully connected by cables

A wireless network is a computer network that uses wireless data connections between network nodes.

<span class="mw-page-title-main">Wi-Fi</span> Wireless local area network

Wi-Fi is a family of wireless network protocols based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio waves. These are the most widely used computer networks in the world, used globally in home and small office networks to link devices together and to a wireless router to connect them to the Internet, and in wireless access points in public places like coffee shops, hotels, libraries, and airports to provide visitors with Internet connectivity for their mobile devices.

Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios, such as for home automation, medical device data collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low data rate, and close proximity wireless ad hoc network.

IEEE 802.15.4 is a technical standard which defines the operation of a low-rate wireless personal area network (LR-WPAN). It specifies the physical layer and media access control for LR-WPANs, and is maintained by the IEEE 802.15 working group, which defined the standard in 2003. It is the basis for the Zigbee, ISA100.11a, WirelessHART, MiWi, 6LoWPAN, Thread and SNAP specifications, each of which further extends the standard by developing the upper layers which are not defined in IEEE 802.15.4. In particular, 6LoWPAN defines a binding for the IPv6 version of the Internet Protocol (IP) over WPANs, and is itself used by upper layers like Thread.

<span class="mw-page-title-main">WiMAX</span> Wireless broadband standard

Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

<span class="mw-page-title-main">Wireless mesh network</span> Radio nodes organized in a mesh topology

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.

<span class="mw-page-title-main">Orthogonal frequency-division multiple access</span> Multi-user version of OFDM digital modulation

Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.

<span class="mw-page-title-main">WiMedia Alliance</span>

The WiMedia Alliance was a non-profit industry trade group that promoted the adoption, regulation, standardization and multi-vendor interoperability of ultra-wideband (UWB) technologies. It existed from about 2002 through 2009.

IEEE 802.11a-1999 or 802.11a was an amendment to the IEEE 802.11 wireless local network specifications that defined requirements for an orthogonal frequency-division multiplexing (OFDM) communication system. It was originally designed to support wireless communication in the unlicensed national information infrastructure (U-NII) bands as regulated in the United States by the Code of Federal Regulations, Title 47, Section 15.407.

IEEE 802.11b-1999 or 802.11b is an amendment to the IEEE 802.11 wireless networking specification that extends throughout up to 11 Mbit/s using the same 2.4 GHz band. A related amendment was incorporated into the IEEE 802.11-2007 standard.

IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that operates in the 2.4 GHz microwave band. The standard has extended throughput to up to 54 Mbit/s using the same 20 MHz bandwidth as 802.11b uses to achieve 11 Mbit/s. This specification under the marketing name of Wi-Fi has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.

<span class="mw-page-title-main">Chirp spread spectrum</span>

In digital communications, chirp spread spectrum (CSS) is a spread spectrum technique that uses wideband linear frequency modulated chirp pulses to encode information. A chirp is a sinusoidal signal whose frequency increases or decreases over time.

IEEE 802.15.4a was an amendment to IEEE 802.15.4-2006 specifying that additional physical layers (PHYs) be added to the original standard. It has been merged into and is superseded by IEEE 802.15.4-2011.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

WiGig, alternatively known as 60 GHz Wi-Fi, refers to a set of 60 GHz wireless network protocols. It includes the current IEEE 802.11ad standard and also the IEEE 802.11ay standard.

IEEE 802.11ah is a wireless networking protocol published in 2017 called Wi-Fi HaLow as an amendment of the IEEE 802.11-2007 wireless networking standard. It uses 900 MHz license-exempt bands to provide extended-range Wi-Fi networks, compared to conventional Wi-Fi networks operating in the 2.4 GHz and 5 GHz bands. It also benefits from lower energy consumption, allowing the creation of large groups of stations or sensors that cooperate to share signals, supporting the concept of the Internet of things (IoT). The protocol's low power consumption competes with Bluetooth, LoRa, and Zigbee, and has the added benefit of higher data rates and wider coverage range.

IEEE 802.11ax, officially marketed by the Wi-Fi Alliance as Wi-Fi 6 and Wi-Fi 6E (6 GHz), is an IEEE standard for wireless local-area networks (WLANs) and the successor of 802.11ac. It is also known as High EfficiencyWi-Fi, for the overall improvements to Wi-Fi 6 clients in dense environments. It is designed to operate in license-exempt bands between 1 and 7.125 GHz, including the 2.4 and 5 GHz bands already in common use as well as the much wider 6 GHz band.

References

  1. 1 2 "LTE". 3GPP web site. 2009. Retrieved August 20, 2011.
  2. 1 2 3 "WiMAX and the IEEE 802.16m Air Interface Standard" (PDF). WiMax Forum. 4 April 2010. Retrieved 2012-02-07.
  3. 1 2 3 "Ericsson, Telstra Achieve World's First 200km Cell Range Mobile Broadband Coverage". www.physorg.com.
  4. "IPWireless". Archived from the original on 2007-01-01. Retrieved 2006-12-30.
  5. "UMTS-TDD developer's frequency notes". Archived from the original on 2006-11-27. Retrieved 2006-12-30.
  6. IEEE 802.11, List of WLAN channels