Last updated
Meteorites are often studied as part of cosmochemistry. MET00506.jpg
Meteorites are often studied as part of cosmochemistry.

Cosmochemistry (from Greek κόσμος kósmos, "universe" and χημεία khemeía) or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. [1] This is done primarily through the study of the chemical composition of meteorites and other physical samples. Given that the asteroid parent bodies of meteorites were some of the first solid material to condense from the early solar nebula, cosmochemists are generally, but not exclusively, concerned with the objects contained within the Solar System.



In 1938, Swiss mineralogist Victor Goldschmidt and his colleagues compiled a list of what they called "cosmic abundances" based on their analysis of several terrestrial and meteorite samples. [2] Goldschmidt justified the inclusion of meteorite composition data into his table by claiming that terrestrial rocks were subjected to a significant amount of chemical change due to the inherent processes of the Earth and the atmosphere. This meant that studying terrestrial rocks exclusively would not yield an accurate overall picture of the chemical composition of the cosmos. Therefore, Goldschmidt concluded that extraterrestrial material must also be included to produce more accurate and robust data. This research is considered to be the foundation of modern cosmochemistry. [1]

During the 1950s and 1960s, cosmochemistry became more accepted as a science. Harold Urey, widely considered to be one of the fathers of cosmochemistry, [1] engaged in research that eventually led to an understanding of the origin of the elements and the chemical abundance of stars. In 1956, Urey and his colleague, German scientist Hans Suess, published the first table of cosmic abundances to include isotopes based on meteorite analysis. [3]

The continued refinement of analytical instrumentation throughout the 1960s, especially that of mass spectrometry, allowed cosmochemists to perform detailed analyses of the isotopic abundances of elements within meteorites. in 1960, John Reynolds determined, through the analysis of short-lived nuclides within meteorites, that the elements of the Solar System were formed before the Solar System itself [4] which began to establish a timeline of the processes of the early Solar System.


Meteorites are one of the most important tools that cosmochemists have for studying the chemical nature of the Solar System. Many meteorites come from material that is as old as the Solar System itself, and thus provide scientists with a record from the early solar nebula. [1] Carbonaceous chondrites are especially primitive; that is they have retained many of their chemical properties since their formation 4.56 billion years ago, [5] and are therefore a major focus of cosmochemical investigations.

The most primitive meteorites also contain a small amount of material (< 0.1%) which is now recognized to be presolar grains that are older than the Solar System itself, and which are derived directly from the remnants of the individual supernovae that supplied the dust from which the Solar System formed. These grains are recognizable from their exotic chemistry which is alien to the Solar System (such as matrixes of graphite, diamond, or silicon carbide). They also often have isotope ratios which are not those of the rest of the Solar System (in particular, the Sun), and which differ from each other, indicating sources in a number of different explosive supernova events. Meteorites also may contain interstellar dust grains, which have collected from non-gaseous elements in the interstellar medium, as one type of composite cosmic dust ("stardust"). [1]

Recent findings by NASA, based on studies of meteorites found on Earth, suggests DNA and RNA components (adenine, guanine and related organic molecules), building blocks for life as we know it, may be formed extraterrestrially in outer space. [6] [7] [8]


On 30 July 2015, scientists reported that upon the first touchdown of the Philae lander on comet 67/P 's surface, measurements by the COSAC and Ptolemy instruments revealed sixteen organic compounds, four of which were seen for the first time on a comet, including acetamide, acetone, methyl isocyanate and propionaldehyde. [9] [10] [11]


In 2004, scientists reported [12] detecting the spectral signatures of anthracene and pyrene in the ultraviolet light emitted by the Red Rectangle nebula (no other such complex molecules had ever been found before in outer space). This discovery was considered a confirmation of a hypothesis that as nebulae of the same type as the Red Rectangle approach the ends of their lives, convection currents cause carbon and hydrogen in the nebulae's core to get caught in stellar winds, and radiate outward. [13] As they cool, the atoms supposedly bond to each other in various ways and eventually form particles of a million or more atoms. The scientists inferred [12] that since they discovered polycyclic aromatic hydrocarbons (PAHs)—which may have been vital in the formation of early life on Earth—in a nebula, by necessity they must originate in nebulae. [13]

In August 2009, NASA scientists identified one of the fundamental chemical building-blocks of life (the amino acid glycine) in a comet for the first time. [14]

In 2010, fullerenes (or "buckyballs") were detected in nebulae. [15] Fullerenes have been implicated in the origin of life; according to astronomer Letizia Stanghellini, "It's possible that buckyballs from outer space provided seeds for life on Earth." [16]

In August 2011, findings by NASA, based on studies of meteorites found on Earth, suggests DNA and RNA components (adenine, guanine and related organic molecules), building blocks for life as we know it, may be formed extraterrestrially in outer space. [6] [7] [8]

In October 2011, scientists reported that cosmic dust contains complex organic matter ("amorphous organic solids with a mixed aromatic-aliphatic structure") that could be created naturally, and rapidly, by stars. [17] [18] [19]

On August 29, 2012, astronomers at Copenhagen University reported the detection of a specific sugar molecule, glycolaldehyde, in a distant star system. The molecule was found around the protostellar binary IRAS 16293-2422, which is located 400 light years from Earth. [20] [21] Glycolaldehyde is needed to form ribonucleic acid, or RNA, which is similar in function to DNA. This finding suggests that complex organic molecules may form in stellar systems prior to the formation of planets, eventually arriving on young planets early in their formation. [22]

In September 2012, NASA scientists reported that polycyclic aromatic hydrocarbons (PAHs), subjected to interstellar medium (ISM) conditions, are transformed, through hydrogenation, oxygenation and hydroxylation, to more complex organics—"a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively". [23] [24] Further, as a result of these transformations, the PAHs lose their spectroscopic signature which could be one of the reasons "for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks." [23] [24]

In 2013, the Atacama Large Millimeter Array (ALMA Project) confirmed that researchers have discovered an important pair of prebiotic molecules in the icy particles in interstellar space (ISM). The chemicals, found in a giant cloud of gas about 25,000 light-years from Earth in ISM, may be a precursor to a key component of DNA and the other may have a role in the formation of an important amino acid. Researchers found a molecule called cyanomethanimine, which produces adenine, one of the four nucleobases that form the "rungs" in the ladder-like structure of DNA. The other molecule, called ethanamine, is thought to play a role in forming alanine, one of the twenty amino acids in the genetic code. Previously, scientists thought such processes took place in the very tenuous gas between the stars. The new discoveries, however, suggest that the chemical formation sequences for these molecules occurred not in gas, but on the surfaces of ice grains in interstellar space. [25] NASA ALMA scientist Anthony Remijan stated that finding these molecules in an interstellar gas cloud means that important building blocks for DNA and amino acids can 'seed' newly formed planets with the chemical precursors for life. [26]

In January 2014, NASA reported that current studies on the planet Mars by the Curiosity and Opportunity rovers will now be searching for evidence of ancient life, including a biosphere based on autotrophic, chemotrophic and/or chemolithoautotrophic microorganisms, as well as ancient water, including fluvio-lacustrine environments (plains related to ancient rivers or lakes) that may have been habitable. [27] [28] [29] [30] The search for evidence of habitability, taphonomy (related to fossils), and organic carbon on the planet Mars is now a primary NASA objective. [27]

In February 2014, NASA announced a greatly upgraded database for tracking polycyclic aromatic hydrocarbons (PAHs) in the universe. According to scientists, more than 20% of the carbon in the universe may be associated with PAHs, possible starting materials for the formation of life. PAHs seem to have been formed shortly after the Big Bang, are widespread throughout the universe, and are associated with new stars and exoplanets. [31]

See also

Related Research Articles

<span class="mw-page-title-main">Astrobiology</span> Science concerned with life in the universe

Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe through investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.

<span class="mw-page-title-main">Extraterrestrial life</span> Life that did not originate on Earth

Extraterrestrial life, colloquially referred to as alien life, is life that may occur outside of Earth and which did not originate on Earth. No extraterrestrial life has yet been conclusively detected, although efforts are underway. Such life might range from simple forms like prokaryotes to intelligent beings, possibly bringing forth civilizations that might be far more advanced than humankind. The Drake equation speculates about the existence of sapient life elsewhere in the universe. The science of extraterrestrial life is known as astrobiology.

<span class="mw-page-title-main">Panspermia</span> Hypothesis on the interstellar spreading of primordial life

Panspermia is the hypothesis, first proposed in the 5th century BCE by the Greek philosopher Anaxagoras, that life exists throughout the Universe, distributed by space dust, meteoroids, asteroids, comets, and planetoids, as well as by spacecraft carrying unintended contamination by microorganisms. Panspermia is a fringe theory with little support amongst mainstream scientists. Critics argue that it does not answer the question of the origin of life but merely places it on another celestial body. It is also criticized because it cannot be tested experimentally.

<span class="mw-page-title-main">Interstellar medium</span> Matter and radiation in the space between the star systems in a galaxy

In astronomy, the interstellar medium (ISM) is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field.

<span class="mw-page-title-main">Astrochemistry</span> Study of molecules in the Universe and their reactions

Astrochemistry is the study of the abundance and reactions of molecules in the Universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it is from these clouds that solar systems form.

<span class="mw-page-title-main">Allan Hills 84001</span> Martian meteorite discovered in Antarctica in 1984

Allan Hills 84001 (ALH84001) is a fragment of a Martian meteorite that was found in the Allan Hills in Antarctica on December 27, 1984, by a team of American meteorite hunters from the ANSMET project. Like other members of the shergottite–nakhlite–chassignite (SNC) group of meteorites, ALH84001 is thought to have originated on Mars. However, it does not fit into any of the previously discovered SNC groups. Its mass upon discovery was 1.93 kilograms (4.3 lb).

<span class="mw-page-title-main">Tholin</span> Class of molecules formed by ultraviolet irradiation of organic compounds

Tholins are a wide variety of organic compounds formed by solar ultraviolet or cosmic ray irradiation of simple carbon-containing compounds such as carbon dioxide, methane or ethane, often in combination with nitrogen or water. Tholins are disordered polymer-like materials made of repeating chains of linked subunits and complex combinations of functional groups, typically nitriles and hydrocarbons and their degraded forms such as amines and phenyls. Tholins do not form naturally on modern-day Earth, but they are found in great abundance on the surfaces of icy bodies in the outer Solar System, and as reddish aerosols in the atmospheres of outer Solar System planets and moons.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

<span class="mw-page-title-main">Chandra Wickramasinghe</span> British astronomer (born 1939)

Nalin Chandra Wickramasinghe is a Sri Lankan-born British mathematician, astronomer and astrobiologist of Sinhalese ethnicity. His research interests include the interstellar medium, infrared astronomy, light scattering theory, applications of solid-state physics to astronomy, the early Solar System, comets, astrochemistry, the origin of life and astrobiology. A student and collaborator of Fred Hoyle, the pair worked jointly for over 40 years as influential proponents of panspermia. In 1974 they proposed the hypothesis that some dust in interstellar space was largely organic, later proven to be correct.

<span class="mw-page-title-main">Murchison meteorite</span> Meteorite of notable scientific interest

The Murchison meteorite is a meteorite that fell in Australia in 1969 near Murchison, Victoria. It belongs to the carbonaceous chondrite class, a group of meteorites rich in organic compounds. Due to its mass and the fact that it was an observed fall, the Murchison meteorite is one of the most studied of all meteorites.

Theoretical astronomy is the use of analytical and computational models based on principles from physics and chemistry to describe and explain astronomical objects and astronomical phenomena. Theorists in astronomy endeavor to create theoretical models and from the results predict observational consequences of those models. The observation of a phenomenon predicted by a model allows astronomers to select between several alternate or conflicting models as the one best able to describe the phenomena.

<span class="mw-page-title-main">Cosmic dust</span> Dust floating in space

Cosmic dust, also called extraterrestrial dust, star dust or space dust, is dust which exists in outer space, or has fallen on Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm, such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust and circumplanetary dust. There are several methods to obtain space dust measurement.

<span class="mw-page-title-main">PAH world hypothesis</span> Hypothesis about the origin of life

The PAH world hypothesis is a speculative hypothesis that proposes that polycyclic aromatic hydrocarbons (PAHs), known to be abundant in the universe, including in comets, and assumed to be abundant in the primordial soup of the early Earth, played a major role in the origin of life by mediating the synthesis of RNA molecules, leading into the RNA world. However, as yet, the hypothesis is untested.

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

<span class="mw-page-title-main">EXPOSE</span> External facility on the ISS dedicated to astrobiology experiments

EXPOSE is a multi-user facility mounted outside the International Space Station (ISS) dedicated to astrobiology. EXPOSE was developed by the European Space Agency (ESA) for long-term spaceflights and was designed to allow exposure of chemical and biological samples to outer space while recording data during exposure.

<span class="mw-page-title-main">Abiogenesis</span> Natural process by which life arises from non-living matter

In biology, abiogenesis or the origin of life is the natural process by which life has arisen from non-living matter, such as simple organic compounds. The prevailing scientific hypothesis is that the transition from non-living to living entities on Earth was not a single event, but a process of increasing complexity involving the formation of a habitable planet, the prebiotic synthesis of organic molecules, molecular self-replication, self-assembly, autocatalysis, and the emergence of cell membranes. Many proposals have been made for different stages of the process.

<span class="mw-page-title-main">O/OREOS</span> NASA nanosatellite with 2 astrobiology experiments on board

The O/OREOS is an NASA automated CubeSat nanosatellite laboratory approximately the size of a loaf of bread that contains two separate astrobiology experiments on board. Developed by the Small Spacecraft Division at NASA Ames Research Center, the spacecraft was successfully launched as a secondary payload on STP-S26 led by the Space Test Program of the United States Air Force on a Minotaur IV launch vehicle from Kodiak Island, Alaska on 20 November 2010, at 01:25:00 UTC.

Interstellar ice consists of grains of volatiles in the ice phase that form in the interstellar medium. Ice and dust grains form the primary material out of which the Solar System was formed. Grains of ice are found in the dense regions of molecular clouds, where new stars are formed. Temperatures in these regions can be as low as 10 K, allowing molecules that collide with grains to form an icy mantle. Thereafter, atoms undergo thermal motion across the surface, eventually forming bonds with other atoms. This results in the formation of water and methanol. Indeed, the ices are dominated by water and methanol, as well as ammonia, carbon monoxide and carbon dioxide. Frozen formaldehyde and molecular hydrogen may also be present. Found in lower abundances are nitriles, ketones, esters and carbonyl sulfide. The mantles of interstellar ice grains are generally amorphous, becoming crystalline only in the presence of a star.

OREOcube is an experiment designed by the European Space Agency (ESA) with the NASA that will investigate the effects of solar and cosmic radiation on selected organic compounds. It will consist in a 12-month orbital study of the effects of the outer space environment on astrobiologically relevant materials in an external exposure facility on the International Space Station (ISS).

Pseudo-panspermia is a well-supported hypothesis for a stage in the origin of life. The theory first asserts that many of the small organic molecules used for life originated in space. It continues that these organic molecules were distributed to planetary surfaces, where life then emerged on Earth and perhaps on other planets. Pseudo-panspermia differs from the fringe theory of panspermia, which asserts that life arrived on Earth from distant planets.


  1. 1 2 3 4 5 McSween, Harry; Huss, Gary (2010). Cosmochemistry (1st ed.). Cambridge University Press. ISBN   978-0-521-87862-3.
  2. Goldschmidt, Victor (1938). Geochemische Verteilungsgestze der Elemente IX. Oslo: Skrifter Utgitt av Det Norske Vidensk. Akad.
  3. Suess, Hans; Urey, Harold (1956). "Abundances of the Elements". Reviews of Modern Physics. 28 (1): 53–74. Bibcode:1956RvMP...28...53S. doi:10.1103/RevModPhys.28.53.
  4. Reynolds, John (April 1960). "Isotopic Composition of Primordial Xenon". Physical Review Letters. 4 (7): 351–354. Bibcode:1960PhRvL...4..351R. doi:10.1103/PhysRevLett.4.351.
  5. McSween, Harry (August 1979). "Are Carbonaceous Chondrites Primitive or Processed? A Review". Reviews of Geophysics and Space Physics. 17 (5): 1059–1078. Bibcode:1979RvGSP..17.1059M. doi:10.1029/RG017i005p01059.
  6. 1 2 Callahan, M.P.; Smith, K.E.; et al. (11 August 2011). "Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases". Proc. Natl. Acad. Sci. U.S.A. 108 (34): 13995–13998. Bibcode:2011PNAS..10813995C. doi: 10.1073/pnas.1106493108 . PMC   3161613 . PMID   21836052.
  7. 1 2 Steigerwald, John (8 August 2011). "NASA Researchers: DNA Building Blocks Can Be Made in Space". NASA . Retrieved 2011-08-10.
  8. 1 2 ScienceDaily Staff (9 August 2011). "DNA Building Blocks Can Be Made in Space, NASA Evidence Suggests". ScienceDaily . Retrieved 2011-08-09.
  9. Jordans, Frank (30 July 2015). "Philae probe finds evidence that comets can be cosmic labs". The Washington Post. Associated Press. Archived from the original on 23 December 2018. Retrieved 30 July 2015.
  10. "Science on the Surface of a Comet". European Space Agency. 30 July 2015. Retrieved 30 July 2015.
  11. Bibring, J.-P.; Taylor, M.G.G.T.; Alexander, C.; Auster, U.; Biele, J.; Finzi, A. Ercoli; Goesmann, F.; Klingehoefer, G.; Kofman, W.; Mottola, S.; Seidenstiker, K.J.; Spohn, T.; Wright, I. (31 July 2015). "Philae's First Days on the Comet – Introduction to Special Issue". Science . 349 (6247): 493. Bibcode:2015Sci...349..493B. doi: 10.1126/science.aac5116 . PMID   26228139.
  12. 1 2 Battersby, S. (2004). "Space molecules point to organic origins". New Scientist . Retrieved 11 December 2009.
  13. 1 2 Mulas, G.; Malloci, G.; Joblin, C.; Toublanc, D. (2006). "Estimated IR and phosphorescence emission fluxes for specific polycyclic aromatic hydrocarbons in the Red Rectangle". Astronomy and Astrophysics. 446 (2): 537–549. arXiv: astro-ph/0509586 . Bibcode:2006A&A...446..537M. doi:10.1051/0004-6361:20053738. S2CID   14545794.
  14. Staff (18 August 2009). "'Life chemical' detected in comet". NASA . BBC News. Retrieved 6 March 2010.
  15. García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R. A.; Szczerba, R.; Perea-Calderón, J. V. (28 October 2010). "Formation Of Fullerenes In H-Containing Planetary Nebulae". The Astrophysical Journal Letters . 724 (1): L39–L43. arXiv: 1009.4357 . Bibcode:2010ApJ...724L..39G. doi:10.1088/2041-8205/724/1/L39. S2CID   119121764.
  16. Atkinson, Nancy (27 October 2010). "Buckyballs Could Be Plentiful in the Universe". Universe Today . Retrieved 28 October 2010.
  17. Chow, Denise (26 October 2011). "Discovery: Cosmic Dust Contains Organic Matter from Stars". . Retrieved 2011-10-26.
  18. ScienceDaily Staff (26 October 2011). "Astronomers Discover Complex Organic Matter Exists Throughout the Universe". ScienceDaily . Retrieved 2011-10-27.
  19. Kwok, Sun; Zhang, Yong (26 October 2011). "Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features". Nature . 479 (7371): 80–83. Bibcode:2011Natur.479...80K. doi:10.1038/nature10542. PMID   22031328. S2CID   4419859.
  20. Than, Ker (August 29, 2012). "Sugar Found In Space". National Geographic. Retrieved August 31, 2012.
  21. Staff (August 29, 2012). "Sweet! Astronomers spot sugar molecule near star". Associated Press. Retrieved August 31, 2012.
  22. Jørgensen, J. K.; Favre, C.; et al. (2012). "Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA" (PDF). The Astrophysical Journal. eprint. 757 (1): L4. arXiv: 1208.5498 . Bibcode:2012ApJ...757L...4J. doi:10.1088/2041-8205/757/1/L4. S2CID   14205612.
  23. 1 2 Staff (September 20, 2012). "NASA Cooks Up Icy Organics to Mimic Life's Origins". . Retrieved September 22, 2012.
  24. 1 2 Gudipati, Murthy S.; Yang, Rui (September 1, 2012). "In-Situ Probing Of Radiation-Induced Processing Of Organics In Astrophysical Ice Analogs – Novel Laser Desorption Laser Ionization Time-Of-Flight Mass Spectroscopic Studies". The Astrophysical Journal Letters . 756 (1): L24. Bibcode:2012ApJ...756L..24G. doi:10.1088/2041-8205/756/1/L24. S2CID   5541727.
  25. Loomis, Ryan A.; Zaleski, Daniel P.; Steber, Amanda L.; Neill, Justin L.; Muckle, Matthew T.; Harris, Brent J.; Hollis, Jan M.; Jewell, Philip R.; Lattanzi, Valerio; Lovas, Frank J.; Martinez, Oscar; McCarthy, Michael C.; Remijan, Anthony J.; Pate, Brooks H.; Corby, Joanna F. (2013). "The Detection of Interstellar Ethanimine (Ch3Chnh) from Observations Taken During the Gbt Primos Survey". The Astrophysical Journal. 765 (1): L9. arXiv: 1302.1121 . Bibcode:2013ApJ...765L...9L. doi:10.1088/2041-8205/765/1/L9. S2CID   118522676.
  26. Finley, Dave (2013-02-28). "Discoveries Suggest Icy Cosmic Start for Amino Acids and DNA Ingredients". The National Radio Astronomy Observatory. Retrieved 2018-07-17.
  27. 1 2 Grotzinger, John P. (24 January 2014). "Introduction to Special Issue – Habitability, Taphonomy, and the Search for Organic Carbon on Mars". Science . 343 (6169): 386–387. Bibcode:2014Sci...343..386G. doi: 10.1126/science.1249944 . PMID   24458635.
  28. Various (24 January 2014). "Special Issue – Table of Contents – Exploring Martian Habitability". Science . 343 (6169): 345–452. Retrieved 24 January 2014.{{cite journal}}: CS1 maint: uses authors parameter (link)
  29. Various (24 January 2014). "Special Collection – Curiosity – Exploring Martian Habitability". Science . Retrieved 24 January 2014.{{cite journal}}: CS1 maint: uses authors parameter (link)
  30. Grotzinger, J. P.; et al. (24 January 2014). "A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars". Science . 343 (6169): 1242777. Bibcode:2014Sci...343A.386G. CiteSeerX . doi:10.1126/science.1242777. PMID   24324272. S2CID   52836398.
  31. Hoover, Rachel (February 21, 2014). "Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That". NASA . Retrieved February 22, 2014.