Last updated

Cryochemistry is the study of chemical interactions at temperatures below −150 °C (−238 °F; 123 K). [1] It is derived from the Greek word cryos, meaning 'cold'. It overlaps with many other sciences, including chemistry, cryobiology, condensed matter physics, and even astrochemistry.


Cryochemistry has been a topic of interest since liquid nitrogen, which freezes at −210°C, became commonly available.[ when? ] Cryogenic-temperature chemical interactions are an important mechanism for studying the detailed pathways of chemical reactions by reducing the confusion introduced by thermal fluctuations. Cryochemistry forms the foundation for cryobiology, which uses slowed or stopped biological processes for medical and research purposes.

Low temperature behaviours

When cooled below the Lambda point (2.17 K or -270.98 degC at 1 atm), liquid helium exhibits properties of superfluidity 2 Helium.png
When cooled below the Lambda point (2.17 K or −270.98 °C at 1 atm), liquid helium exhibits properties of superfluidity

As a material cools, the relative motion of its component molecules/atoms decreases - its temperature decreases. Cooling can continue until all motion ceases, and its kinetic energy, or energy of motion, disappears. This condition is known as absolute zero and it forms the basis for the Kelvin temperature scale, which measures the temperature above absolute zero. Zero degrees Celsius (°C) coincides with 273 Kelvin.

At absolute zero most elements become a solid, but not all behave as predictably as this; for instance, helium becomes a highly unusual liquid. The chemistry between substances, however, does not disappear, even near absolute zero temperatures, since separated molecules/atom can always combine to lower their total energy. Almost every molecule or element will show different properties at different temperatures; if cold enough, some functions are lost entirely. Cryogenic chemistry can lead to very different results compared with standard chemistry, and new chemical routes to substances may be available at cryogenic temperatures, such as the formation of argon fluorohydride, which is only a stable compound at or below 17 K (−256.1 °C).

Methods of cooling

One method that used to cool molecules to temperatures near absolute zero is laser cooling. In the Doppler cooling process, lasers are used to remove energy from electrons of a given molecule to slow or cool the molecule down. This method has applications in quantum mechanics and is related to particle traps and the Bose–Einstein condensate. All of these methods use a "trap" consisting of lasers pointed at opposite equatorial angles on a specific point in space. The wavelengths from the laser beams eventually hit the gaseous atoms and their outer spinning electrons. This clash of wavelengths decreases the kinetic energy state fraction by fraction to slow or cool the molecules down. Laser cooling has also been used to help improve atomic clocks and atom optics. Ultracold studies are not usually focused on chemical interactions, but rather on fundamental chemical properties.[ citation needed ]

Because of the extremely low temperatures, diagnosing the chemical status is a major issue when studying low temperature physics and chemistry.[ clarification needed ] The primary techniques in use today are optical - many types of spectroscopy are available, but these require special apparatus with vacuum windows that provide room temperature access to cryogenic processes.

See also

Related Research Articles

Absolute zero The lowest attainable temperature

Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvins. The fundamental particles of nature have minimum vibrational motion, retaining only quantum mechanical, zero-point energy-induced particle motion. The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as −273.15° on the Celsius scale, which equals −459.67° on the Fahrenheit scale. The corresponding Kelvin and Rankine temperature scales set their zero points at absolute zero by definition.

Bose–Einstein condensate State of matter

A Bose–Einstein condensate (BEC) is a state of matter which is typically formed when a gas of bosons at low densities is cooled to temperatures very close to absolute zero (-273.15 °C). Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which point microscopic quantum phenomena, particularly wavefunction interference, become apparent macroscopically. A BEC is formed by cooling a gas of extremely low density, about one-hundred-thousandth (1/100,000) the density of normal air, to ultra-low temperatures.

State of matter Distinct forms that different phases of matter take on

In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates, neutron-degenerate matter, and quark–gluon plasma, which only occur, respectively, in situations of extreme cold, extreme density, and extremely high energy. For a complete list of all exotic states of matter, see the list of states of matter.

Thermodynamic temperature Absolute measure of temperature

Thermodynamic temperature is the absolute measure of temperature and is one of the principal parameters of thermodynamics.

Laser cooling Cooling techniques involving lasers

Laser cooling includes a number of techniques in which atomic and molecular samples are cooled down to near absolute zero. Laser cooling techniques rely on the fact that when an object absorbs and re-emits a photon its momentum changes. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity. That is, more homogeneous velocities among particles corresponds to a lower temperature. Laser cooling techniques combine atomic spectroscopy with the aforementioned mechanical effect of light to compress the velocity distribution of an ensemble of particles, thereby cooling the particles.

Negative temperature Physical systems hotter than any other

Certain systems can achieve negative thermodynamic temperature; that is, their temperature can be expressed as a negative quantity on the Kelvin or Rankine scales. This should be distinguished from temperatures expressed as negative numbers on non-thermodynamic Celsius or Fahrenheit scales, which are nevertheless higher than absolute zero.

Deborah S. Jin American physicist

Deborah Shiu-lan Jin was an American physicist and fellow with the National Institute of Standards and Technology (NIST); Professor Adjunct, Department of Physics at the University of Colorado; and a fellow of the JILA, a NIST joint laboratory with the University of Colorado.

Wolfgang Ketterle German physicist

Wolfgang Ketterle is a German physicist and professor of physics at the Massachusetts Institute of Technology (MIT). His research has focused on experiments that trap and cool atoms to temperatures close to absolute zero, and he led one of the first groups to realize Bose–Einstein condensation in these systems in 1995. For this achievement, as well as early fundamental studies of condensates, he was awarded the Nobel Prize in Physics in 2001, together with Eric Allin Cornell and Carl Wieman.

Bose gas State of matter of many bosons

An ideal Bose gas is a quantum-mechanical phase of matter, analogous to a classical ideal gas. It is composed of bosons, which have an integer value of spin, and obey Bose–Einstein statistics. The statistical mechanics of bosons were developed by Satyendra Nath Bose for a photon gas, and extended to massive particles by Albert Einstein who realized that an ideal gas of bosons would form a condensate at a low enough temperature, unlike a classical ideal gas. This condensate is known as a Bose–Einstein condensate.

A quantum fluid refers to any system that exhibits quantum mechanical effects at the macroscopic level such as superfluids, superconductors, ultracold atoms, etc. Typically, quantum fluids arise in situations where both quantum mechanical effects and quantum statistical effects are significant.

Ultracold atoms are atoms that are maintained at temperatures close to 0 kelvin, typically below several tens of microkelvin (µK). At these temperatures the atom's quantum-mechanical properties become important.

A magnetic trap is an apparatus which uses a magnetic field gradient to trap neutral particles with magnetic moments. Although such traps have been employed for many purposes in physics research, they are best known as the last stage in cooling atoms to achieve Bose–Einstein condensation. The magnetic trap was first proposed by David E. Pritchard.

Jook Walraven Dutch physicist

Joannes Theodorus Maria (Jook) Walraven is a Dutch experimental physicist at the Van der Waals-Zeeman Institute for experimental physics in Amsterdam. From 1967 he studied physics at the University of Amsterdam. Both his doctoral research and PhD research was with Isaac Silvera, on the subject of Bose-Einstein Condensation. Because of the difficulty of his research subject, his promotion took six years instead of four. The aim of his PhD research was to make a gas of atomic hydrogen, which could become the world's first quantum gas. This might then be a suitable candidate for a Bose-Einstein condensate (BEC).

Sympathetic cooling is a process in which particles of one type cool particles of another type.

In quantum mechanics, a boson is a particle that follows Bose–Einstein statistics. Bosons make up one of two classes of elementary particles, the other being fermions. The name boson was coined by Paul Dirac to commemorate the contribution of Satyendra Nath Bose, an Indian physicist and professor of physics at University of Calcutta and at University of Dhaka in developing, with Albert Einstein, Bose–Einstein statistics—which theorizes the characteristics of elementary particles.

Temperature Physical quantity that expresses hot and cold

Temperature is a physical property of matter that quantitatively expresses hot and cold. It is the manifestation of thermal energy, present in all matter, which is the source of the occurrence of heat, a flow of energy, when a body is in contact with another that is colder.

Superfluidity Non-classical state of matter

Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two isotopes of helium when they are liquefied by cooling to cryogenic temperatures. It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-energy physics, and theories of quantum gravity. Superfluidity is often coincidental with Bose–Einstein condensation, but neither phenomenon is directly related to the other; not all Bose-Einstein condensates can be regarded as superfluids, and not all superfluids are Bose–Einstein condensates. The semiphenomenological theory of superfluidity was developed by Lev Landau.

Helium cryogenics

In the field of cryogenics, helium [He] is utilized for a variety of reasons. The combination of helium’s extremely low molecular weight and weak interatomic reactions yield interesting properties when helium is cooled below its critical temperature of 5.2 K to form a liquid. Even at absolute zero (0K), helium does not condense to form a solid. In this state, the zero point vibrational energies of helium are comparable to very weak interatomic binding interactions, thus preventing lattice formation and giving helium its fluid characteristics. Within this liquid state, helium has two phases referred to as helium I and helium II. Helium I displays thermodynamic and hydrodynamic properties of classical fluids, along with quantum characteristics. However, below its lambda point of 2.17 K, helium transitions to He II and becomes a quantum superfluid with zero viscosity.

The I. I. Rabi Prize in Atomic, Molecular, and Optical Physics is given by the American Physical Society to recognize outstanding work by mid-career researchers in the field of atomic, molecular, and optical physics. The award was endowed in 1989 in honor of the physicist I. I. Rabi and has been awarded biannually since 1991.


  1. "cryochemistry". Retrieved 2020-02-24.