DVVL

Last updated

DVVL is an acronym for Discrete variable valve lift, a mechanical component of which two types exist:

An acronym is a word or name formed as a type of abbreviation from the initial components of a phrase or a word,


Related Research Articles

Poppet valve valve typically used to control the timing and quantity of gas or vapour flow into an engine

A poppet valve is a valve typically used to control the timing and quantity of gas or vapour flow into an engine.

Camshaft shaft to which a cam is fastened

A camshaft is a shaft to which a cam is fastened or of which a cam forms an integral part.

The engine configuration describe the fundamental operating principles by which internal combustion engines are categorised.

Pumpjack

A pumpjack is the overground drive for a reciprocating piston pump in an oil well.

Desmodromic valve

A desmodromic valve is a reciprocating engine poppet valve that is positively closed by a cam and leverage system, rather than by a more conventional spring.

Valve gear technical device of a steam engine

The valve gear of a steam engine is the mechanism that operates the inlet and exhaust valves to admit steam into the cylinder and allow exhaust steam to escape, respectively, at the correct points in the cycle. It can also serve as a reversing gear. It is sometimes referred to as the "motion".

VTEC is a system developed by Honda to improve the volumetric efficiency of a four-stroke internal combustion engine, resulting in higher performance at high RPM, and lower fuel consumption at low RPM. The VTEC system uses two camshaft profiles and hydraulically selects between profiles. It was invented by Honda engineer Ikuo Kajitani. It is distinctly different from standard VVT systems which change only the valve timings and do not change the camshaft profile or valve lift in any way.

Variable valve timing process of altering the timing of a valve lift event

In internal combustion engines, variable valve timing (VVT) is the process of altering the timing of a valve lift event, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems.

VVT-i automobile variable valve timing technology

VVT-i, or Variable Valve Timing with intelligence, is an automobile variable valve timing technology developed by Toyota. The Toyota VVT-i system replaces the Toyota VVT offered starting in 1991 on the 5-valve per cylinder 4A-GE engine. The VVT system is a 2-stage hydraulically controlled cam phasing system.

Variable Cam Timing

Variable Camshaft Timing (VCT) is an automobile variable valve timing technology developed by Ford. It allows for more optimum engine performance, reduced emissions, and increased fuel efficiency compared to engines with fixed camshafts. It uses electronically controlled hydraulic valves that direct high pressure engine oil into the camshaft phaser cavity. These oil control solenoids are bolted into the cylinder heads towards the front of the engine near the camshaft phasers. The powertrain control module (PCM) transmits a signal to the solenoids to move a valve spool that regulates the flow of oil to the phaser cavity. The phaser cavity changes the valve timing by rotating the camshaft slightly from its initial orientation, which results in the camshaft timing being advanced or retarded. The PCM adjusts the camshaft timing depending on factors such as engine load and RPM.

The active valve control system (AVCS) is an automobile variable valve timing technology used by Subaru. It varies the timing of the valves by using hydraulic oil pressure to rotate the camshaft, known as "phasing", in order to provide optimal valve timing for engine load conditions. The system is closed loop using the camshaft sensors, crankshaft sensors, air flow meter, throttle position as well as oxygen sensors and/or Air-Fuel ratio sensors in order to calculate engine load. The ECU is programmed to operate control valves that adjust the delivery of the hydraulic pressure in order to move the camshaft into the position that will provide the engine with the best performance while meeting emissions standards.

Overhead valve engine type of piston engine

An overhead valve engine, or pushrod engine, is a reciprocating piston engine whose poppet valves are situated in the cylinder head. An OHV engine's valvetrain operates its valves via a camshaft within the cylinder block, cam followers, pushrods, and rocker arms.

Alfa Romeo Twin Spark engine

Alfa Romeo Twin Spark (TS) technology was used for the first time in the Alfa Romeo Grand Prix car in 1914. In the early 1960s it was used in their race cars to enable it to achieve a higher power output from its engines. And in the early and middle 1980s, Alfa Romeo incorporated this technology into their road cars to enhance their performance and to comply with stricter emission controls.

Rocker arm Oscillating lever in engine

A rocker arm is an oscillating lever that conveys radial movement from the cam lobe into linear movement at the poppet valve to open it. One end is raised and lowered by a rotating lobe of the camshaft while the other end acts on the valve stem. When the camshaft lobe raises the outside of the arm, the inside presses down on the valve stem, opening the valve. When the outside of the arm is permitted to return due to the camshafts rotation, the inside rises, allowing the valve spring to close the valve.

Valvetrain mechanical system that controls operation of the valves in an internal combustion engine

A valvetrain or valve train is a mechanical system that controls operation of the valves in an internal combustion engine, whereby a sequence of components transmits motion throughout the assembly.

A hydraulic tappet, also known as a hydraulic valve lifter or hydraulic lash adjuster, is a device for maintaining zero valve clearance in an internal combustion engine. Conventional solid valve lifters require regular adjusting to maintain a small clearance between the valve and its rocker or cam follower. This space prevents the parts from binding as they expand with the engine's heat, but can also lead to noisy operation and increased wear as the parts rattle against one another until they reach operating temperature. The hydraulic lifter was designed to compensate for this small tolerance, allowing the valve train to operate with zero clearance—leading to quieter operation, longer engine life, and eliminating the need for periodic adjustment of valve clearance.

The following items are commonly used automotive acronyms and abbreviations:

Variable Valve Event and Lift

Nissan Variable Valve Event and Lift is an automobile variable valve timing technology developed by Nissan.

MultiAir

MultiAir is a hydraulically-actuated variable valve timing and variable valve lift engine technology enabling "cylinder by cylinder, stroke by stroke" control of intake air directly via a gasoline engine's inlet valves. Developed by Fiat Powertrain Technologies, the technology bypasses a primary engine inefficiency: pumping losses caused by restriction of the intake passage by the throttle plate, used to regulate air feeding the cylinders.

Variable valve lift (VVL) is an automotive piston engine technology which varies the height a valve opens in order to improve performance, fuel economy or emissions. There are two main types of VVL: discrete, which employs fixed valve lift amounts, and continuous, which is able to vary the amount of lift. Continuous valve lift systems typically allow for the elimination of the throttle valve.