Last updated
These are some of the different types of data. Data types - en.svg
These are some of the different types of data.

In the pursuit of knowledge, data ( US: /ˈdætə/ ; UK: /ˈdtə/ ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted. A datum is an individual value in a collection of data. Data is usually organized into structures such as tables that provide additional context and meaning, and which may themselves be used as data in larger structures. Data may be used as variables in a computational process. [1] [2] Data may represent abstract ideas or concrete measurements. [3] Data is commonly used in scientific research, economics, and in virtually every other form of human organizational activity. Examples of data sets include price indices (such as consumer price index), unemployment rates, literacy rates, and census data. In this context, data represents the raw facts and figures which can be used in such a manner in order to capture the useful information out of it.


Data is collected using techniques such as measurement, observation, query, or analysis, and typically represented as numbers or characters which may be further processed. Field data is data that is collected in an uncontrolled in-situ environment. Experimental data is data that is generated in the course of a controlled scientific experiment. Data is analyzed using techniques such as calculation, reasoning, discussion, presentation, visualization, or other forms of post-analysis. Prior to analysis, raw data (or unprocessed data) is typically cleaned: Outliers are removed and obvious instrument or data entry errors are corrected.

Data can be seen as the smallest units of factual information that can be used as a basis for calculation, reasoning, or discussion. Data can range from abstract ideas to concrete measurements, including but not limited to, statistics. Thematically connected data presented in some relevant context can be viewed as information. Contextually connected pieces of information can then be described as data insights or intelligence. The stock of insights and intelligence that accumulates over time resulting from the synthesis of data into information, can then be described as knowledge. Data has been described as "the new oil of the digital economy". [4] [5] Data, as a general concept, refers to the fact that some existing information or knowledge is represented or coded in some form suitable for better usage or processing.

Advances in computing technologies have led to the advent of big data, which usually refers to very large quantities of data, usually at the petabyte scale. Using traditional data analysis methods and computing, working with such large (and growing) datasets is difficult, even impossible. (Theoretically speaking, infinite data would yield infinite information, which would render extracting insights or intelligence impossible.) In response, the relatively new field of data science uses machine learning (and other artificial intelligence (AI)) methods that allow for efficient applications of analytic methods to big data.

Etymology and terminology

The Latin word data is the plural of datum, "(thing) given", neuter past participle of dare, "to give". [6] The first English use of the word "data" is from the 1640s. The word "data" was first used to mean "transmissible and storable computer information" in 1946. The expression "data processing" was first used in 1954. [6]

When "data" is used more generally as a synonym for "information", it is treated as a mass noun in singular form. This usage is common in everyday language and in technical and scientific fields such as software development and computer science. One example of this usage is the term "big data". When used more specifically to refer to the processing and analysis of sets of data, the term retains its plural form. This usage is common in natural sciences, life sciences, social sciences, software development and computer science, and grew in popularity in the 20th and 21st centuries. Some style guides do not recognize the different meanings of the term, and simply recommend the form that best suits the target audience of the guide. For example, APA style as of the 7th edition requires "data" to be treated as a plural form. [7]


Adrien Auzout's "A TABLE of the Apertures of Object-Glasses" from a 1665 article in Philosophical Transactions Philosophical Transactions - Volume 001.djvu
Adrien Auzout's "A TABLE of the Apertures of Object-Glasses" from a 1665 article in Philosophical Transactions

Data, information, knowledge, and wisdom are closely related concepts, but each has its role concerning the other, and each term has its meaning. According to a common view, data is collected and analyzed; data only becomes information suitable for making decisions once it has been analyzed in some fashion. [8] One can say that the extent to which a set of data is informative to someone depends on the extent to which it is unexpected by that person. The amount of information contained in a data stream may be characterized by its Shannon entropy.

Knowledge is the awareness of its environment that some entity possesses, whereas data merely communicate that knowledge. For example, the entry in a database specifying the height of Mount Everest is a datum that communicates a precisely-measured value. This measurement may be included in a book along with other data on Mount Everest to describe the mountain in a manner useful for those who wish to decide on the best method to climb it. An awareness the characteristics represented by these data is knowledge.

Data is often assumed to be the least abstract concept, information the next least, and knowledge the most abstract. [9] In this view, data becomes information by interpretation; e.g., the height of Mount Everest is generally considered "data", a book on Mount Everest geological characteristics may be considered "information", and a climber's guidebook containing practical information on the best way to reach Mount Everest's peak may be considered "knowledge". "Information" bears a diversity of meanings that ranges from everyday usage to technical use. This view, however, has also been argued to reverse how data emerges from information, and information from knowledge. [10] Generally speaking, the concept of information is closely related to notions of constraint, communication, control, data, form, instruction, knowledge, meaning, mental stimulus, pattern, perception, and representation. Beynon-Davies uses the concept of a sign to differentiate between data and information; data is a series of symbols, while information occurs when the symbols are used to refer to something. [11] [12]

Before the development of computing devices and machines, people had to manually collect data and impose patterns on it. Since the development of computing devices and machines, these devices can also collect data. In the 2010s, computers are widely used in many fields to collect data and sort or process it, in disciplines ranging from marketing, analysis of social services usage by citizens to scientific research. These patterns in data are seen as information that can be used to enhance knowledge. These patterns may be interpreted as "truth" (though "truth" can be a subjective concept) and may be authorized as aesthetic and ethical criteria in some disciplines or cultures. Events that leave behind perceivable physical or virtual remains can be traced back through data. Marks are no longer considered data once the link between the mark and observation is broken. [13]

Mechanical computing devices are classified according to how they represent data. An analog computer represents a datum as a voltage, distance, position, or other physical quantity. A digital computer represents a piece of data as a sequence of symbols drawn from a fixed alphabet. The most common digital computers use a binary alphabet, that is, an alphabet of two characters typically denoted "0" and "1". More familiar representations, such as numbers or letters, are then constructed from the binary alphabet. Some special forms of data are distinguished. A computer program is a collection of data, which can be interpreted as instructions. Most computer languages make a distinction between programs and the other data on which programs operate, but in some languages, notably Lisp and similar languages, programs are essentially indistinguishable from other data. It is also useful to distinguish metadata, that is, a description of other data. A similar yet earlier term for metadata is "ancillary data." The prototypical example of metadata is the library catalog, which is a description of the contents of books.

Data documents

Whenever data needs to be registered, data exists in the form of a data document. Kinds of data documents include:

Some of these data documents (data repositories, data studies, data sets, and software) are indexed in Data Citation Indexes, while data papers are indexed in traditional bibliographic databases, e.g., Science Citation Index.

Data collection

Gathering data can be accomplished through a primary source (the researcher is the first person to obtain the data) or a secondary source (the researcher obtains the data that has already been collected by other sources, such as data disseminated in a scientific journal). Data analysis methodologies vary and include data triangulation and data percolation. [14] The latter offers an articulate method of collecting, classifying, and analyzing data using five possible angles of analysis (at least three) to maximize the research's objectivity and permit an understanding of the phenomena under investigation as complete as possible: qualitative and quantitative methods, literature reviews (including scholarly articles), interviews with experts, and computer simulation. The data is thereafter "percolated" using a series of pre-determined steps so as to extract the most relevant information.

Data longevity and accessibility

An important field in computer science, technology, and library science is the longevity of data. Scientific research generates huge amounts of data, especially in genomics and astronomy, but also in the medical sciences, e.g. in medical imaging. In the past, scientific data has been published in papers and books, stored in libraries, but more recently practically all data is stored on hard drives or optical discs. However, in contrast to paper, these storage devices may become unreadable after a few decades. Scientific publishers and libraries have been struggling with this problem for a few decades, and there is still no satisfactory solution for the long-term storage of data over centuries or even for eternity.

Data accessibility. Another problem is that much scientific data is never published or deposited in data repositories such as databases. In a recent survey, data was requested from 516 studies that were published between 2 and 22 years earlier, but less than 1 out of 5 of these studies were able or willing to provide the requested data. Overall, the likelihood of retrieving data dropped by 17% each year after publication. [15] Similarly, a survey of 100 datasets in Dryad found that more than half lacked the details to reproduce the research results from these studies. [16] This shows the dire situation of access to scientific data that is not published or does not have enough details to be reproduced.

A solution to the problem of reproducibility is the attempt to require FAIR data, that is, data that is Findable, Accessible, Interoperable, and Reusable. Data that fulfills these requirements can be used in subsequent research and thus advances science and technology. [17]

In other fields

Although data is also increasingly used in other fields, it has been suggested that the highly interpretive nature of them might be at odds with the ethos of data as "given". Peter Checkland introduced the term capta (from the Latin capere, “to take”) to distinguish between an immense number of possible data and a sub-set of them, to which attention is oriented. [18] Johanna Drucker has argued that since the humanities affirm knowledge production as "situated, partial, and constitutive," using data may introduce assumptions that are counterproductive, for example that phenomena are discrete or are observer-independent. [19] The term capta, which emphasizes the act of observation as constitutive, is offered as an alternative to data for visual representations in the humanities.

See also

Related Research Articles

<span class="mw-page-title-main">Computer science</span> Study of computation

Computer science is the study of computation, information, and automation. Computer science spans theoretical disciplines to applied disciplines. Though more often considered an academic discipline, computer science is closely related to computer programming.

<span class="mw-page-title-main">Digital data</span> Discrete, discontinuous representation of information

Digital data, in information theory and information systems, is information represented as a string of discrete symbols, each of which can take on one of only a finite number of values from some alphabet, such as letters or digits. An example is a text document, which consists of a string of alphanumeric characters. The most common form of digital data in modern information systems is binary data, which is represented by a string of binary digits (bits) each of which can have one of two values, either 0 or 1.

<span class="mw-page-title-main">Geographic information system</span> System to capture, manage and present geographic data

A geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database, however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.

Information retrieval (IR) in computing and information science is the process of obtaining information system resources that are relevant to an information need from a collection of those resources. Searches can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.

<span class="mw-page-title-main">Semantic network</span> Knowledge base that represents semantic relations between concepts in a network

A semantic network, or frame network is a knowledge base that represents semantic relations between concepts in a network. This is often used as a form of knowledge representation. It is a directed or undirected graph consisting of vertices, which represent concepts, and edges, which represent semantic relations between concepts, mapping or connecting semantic fields. A semantic network may be instantiated as, for example, a graph database or a concept map. Typical standardized semantic networks are expressed as semantic triples.

In software engineering and computer science, abstraction is:

<span class="mw-page-title-main">Information science</span> Academic field concerned with collection and analysis of information

Information science is an academic field which is primarily concerned with analysis, collection, classification, manipulation, storage, retrieval, movement, dissemination, and protection of information. Practitioners within and outside the field study the application and the usage of knowledge in organizations in addition to the interaction between people, organizations, and any existing information systems with the aim of creating, replacing, improving, or understanding the information systems.

Computational archaeology describes computer-based analytical methods for the study of long-term human behaviour and behavioural evolution. As with other sub-disciplines that have prefixed 'computational' to their name, the term is reserved for methods that could not realistically be performed without the aid of a computer.

An information system (IS) is a formal, sociotechnical, organizational system designed to collect, process, store, and distribute information. From a sociotechnical perspective, information systems are composed by four components: task, people, structure, and technology. Information systems can be defined as an integration of components for collection, storage and processing of data of which the data is used to provide information, contribute to knowledge as well as digital products that facilitate decision making.

<span class="mw-page-title-main">Theoretical computer science</span> Subfield of computer science and mathematics

Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory.

<span class="mw-page-title-main">Visualization (graphics)</span> Set of techniques for creating images, diagrams, or animations to communicate a message

Visualization or visualisation is any technique for creating images, diagrams, or animations to communicate a message. Visualization through visual imagery has been an effective way to communicate both abstract and concrete ideas since the dawn of humanity. Examples from history include cave paintings, Egyptian hieroglyphs, Greek geometry, and Leonardo da Vinci's revolutionary methods of technical drawing for engineering and scientific purposes.

<span class="mw-page-title-main">Data and information visualization</span> Visual representation of data

Data and information visualization is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representation of a large amount of complex quantitative and qualitative data and information from a certain domain of expertise with the help of static, dynamic or interactive visual items for a broader audience to help them visually explore and discover, quickly understand, interpret and gain important insights into otherwise difficult-to-identify structures, relationships, correlations, local and global patterns, trends, variations, constancy, clusters, outliers and unusual groupings within data. When intended for the general public to convey a concise version of known, specific information in a clear and engaging manner, it is typically called information graphics.

<span class="mw-page-title-main">Branches of science</span> Overview of the disciplines of study

The branches of science, also referred to as sciences, scientific fields or scientific disciplines, are commonly divided into three major groups:

<span class="mw-page-title-main">Information</span> Facts provided or learned about something or someone

Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level, information pertains to the interpretation of that which may be sensed, or their abstractions. Any natural process that is not completely random and any observable pattern in any medium can be said to convey some amount of information. Whereas digital signals and other data use discrete signs to convey information, other phenomena and artefacts such as analogue signals, poems, pictures, music or other sounds, and currents convey information in a more continuous form. Information is not knowledge itself, but the meaning that may be derived from a representation through interpretation.

Informatics is the study of computational systems. According to the ACM Europe Council and Informatics Europe, informatics is synonymous with computer science and computing as a profession, in which the central notion is transformation of information. In other countries, the term "informatics" is used with a different meaning in the context of library science, in which case it is synonymous with data storage and retrieval.

The following outline is provided as an overview of and topical guide to formal science:

<span class="mw-page-title-main">Data science</span> Interdisciplinary field of study on deriving knowledge and insights from data

Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured data.

The following outline is provided as an overview of and topical guide to natural-language processing:

<span class="mw-page-title-main">Glossary of artificial intelligence</span> List of definitions of terms and concepts commonly used in the study of artificial intelligence

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

This glossary of computer science is a list of definitions of terms and concepts used in computer science, its sub-disciplines, and related fields, including terms relevant to software, data science, and computer programming.


  1. OECD Glossary of Statistical Terms. OECD. 2008. p. 119. ISBN   978-92-64-025561.
  2. "Statistical Language - What are Data?". Australian Bureau of Statistics. 2013-07-13. Archived from the original on 2019-04-19. Retrieved 2020-03-09.
  3. "Data vs Information - Difference and Comparison | Diffen". Retrieved 2018-12-11.
  4. Yonego, Joris Toonders (July 23, 2014). "Data Is the New Oil of the Digital Economy". Wired via
  5. "Data is the new oil". July 16, 2018. Archived from the original on 2021-10-27.
  6. 1 2 "data | Origin and meaning of data by Online Etymology Dictionary".
  7. American Psychological Association (2020). "6.11". Publication Manual of the American Psychological Association: the official guide to APA style. American Psychological Association. ISBN   9781433832161.
  8. "Joint Publication 2-0, Joint Intelligence" (PDF). Joint Chiefs of Staff, Joint Doctrine Publications. Department of Defense. 23 October 2013. pp. I-1. Retrieved July 17, 2018.
  9. Akash Mitra (2011). "Classifying data for successful modeling". Archived from the original on 2017-11-07. Retrieved 2017-11-05.
  10. Tuomi, Ilkka (2000). "Data is more than knowledge". Journal of Management Information Systems. 6 (3): 103–117. doi:10.1080/07421222.1999.11518258.
  11. P. Beynon-Davies (2002). Information Systems: An introduction to informatics in organisations. Basingstoke, UK: Palgrave Macmillan. ISBN   0-333-96390-3.
  12. P. Beynon-Davies (2009). Business information systems. Basingstoke, UK: Palgrave. ISBN   978-0-230-20368-6.
  13. Sharon Daniel. The Database: An Aesthetics of Dignity.
  14. Mesly, Olivier (2015). Creating Models in Psychological Research. États-Unis : Springer Psychology  : 126 pages. ISBN   978-3-319-15752-8
  15. Vines, Timothy H.; Albert, Arianne Y. K.; Andrew, Rose L.; Débarre, Florence; Bock, Dan G.; Franklin, Michelle T.; Gilbert, Kimberly J.; Moore, Jean-Sébastien; Renaut, Sébastien; Rennison, Diana J. (2014-01-06). "The availability of research data declines rapidly with article age". Current Biology. 24 (1): 94–97. doi: 10.1016/j.cub.2013.11.014 . ISSN   1879-0445. PMID   24361065. S2CID   7799662.
  16. Roche, Dominique G.; Kruuk, Loeske E. B.; Lanfear, Robert; Binning, Sandra A. (2015). "Public Data Archiving in Ecology and Evolution: How Well Are We Doing?". PLOS Biology. 13 (11): e1002295. doi:10.1371/journal.pbio.1002295. ISSN   1545-7885. PMC   4640582 . PMID   26556502.
  17. Eisenstein, Michael (April 2022). "In pursuit of data immortality". Nature. 604 (7904): 207–208. Bibcode:2022Natur.604..207E. doi: 10.1038/d41586-022-00929-3 . ISSN   1476-4687. PMID   35379989. S2CID   247954952.
  18. P. Checkland and S. Holwell (1998). Information, Systems, and Information Systems: Making Sense of the Field. Chichester, West Sussex: John Wiley & Sons. pp. 86–89. ISBN   0-471-95820-4.
  19. Johanna Drucker (2011). "Humanities Approaches to Graphical Display". Digital Humanities Quarterly. 005 (1).