December 1983 lunar eclipse

Last updated
December 1983 lunar eclipse
Penumbral eclipse
Date20 December 1983
Gamma 1.07468
Magnitude 0.88903
Saros cycle 144 (14 of 71)
Penumbral242 minutes, 20.6 seconds
Contacts (UTC)
P123:47:55.9 (19 Dec)
Greatest01:49:03.3
P403:50:16.5
  June 1983
May 1984  

A penumbral lunar eclipse took place on Tuesday, December 20, 1983, the second of two lunar eclipses in 1983. At the maximum eclipse, 89% of the Moon's disk was partially shaded by the Earth, which caused a slight shadow gradient across its disc; this subtle effect may have been visible to careful observers. No part of the Moon was in complete shadow. The eclipse lasted 4 hours and 2 minutes overall. [1]

Contents

Visibility

Lunar eclipse from moon-1983Dec20.png

Eclipses in 1983

Lunar year series

Lunar eclipse series sets from 1980–1984
Descending node Ascending node
Saros Date
Viewing
Type
Chart
GammaSarosDate
Viewing
Type
Chart
Gamma
109 1980 Jul 27
Lunar eclipse from moon-1980Jul27.png
Penumbral
Lunar eclipse chart close-1980Jul27.png
1.41391114 1981 Jan 20
Lunar eclipse from moon-1981Jan20.png
Penumbral
Lunar eclipse chart close-1981Jan20.png
−1.01421
119 1981 Jul 17
Lunar eclipse from moon-1981Jul17.png
Partial
Lunar eclipse chart close-1981Jul17.png
0.70454124 1982 Jan 09
Lunar eclipse from moon-1982Jan09.png
Total
Lunar eclipse chart close-1982Jan09.png
−0.29158
129 1982 Jul 06
Lunar eclipse from moon-1982Jul06.png
Total
Lunar eclipse chart close-1982Jul06.png
−0.05792134 1982 Dec 30
Lunar eclipse from moon-1982Dec30.png
Total
Lunar eclipse chart close-1982Dec30.png
0.37579
139 1983 Jun 25
Lunar eclipse from moon-1983Jun25.png
Partial
Lunar eclipse chart close-1983Jun25.png
−0.81520144 1983 Dec 20
Lunar eclipse from moon-1983Dec20.png
Penumbral
Lunar eclipse chart close-1983Dec20.png
1.07468
149 1984 Jun 13
Lunar eclipse from moon-1984Jun13.png
Penumbral
Lunar eclipse chart close-1984Jun13.png
−1.52403
Last set 1980 Aug 26 Last set 1980 Mar 13
Next set 1984 May 15 Next set 1984 Nov 08

Saros cycle

Lunar Saros series 144, repeating every 18 years and 11 days, has a total of 71 lunar eclipse events including 20 total lunar eclipses.

First Penumbral Lunar Eclipse: 1749 Jul 29

First Partial Lunar Eclipse: 2146 Mar 28

First Total Lunar Eclipse: 2308 Jul 04

First Central Lunar Eclipse: 2362 Aug 06

Greatest Eclipse of the Lunar Saros 144: 2416 Sep 07

Last Central Lunar Eclipse: 2488 Oct 20

Last Total Lunar Eclipse: 2651 Jan 28

Last Partial Lunar Eclipse: 2867 Jun 08

Last Penumbral Lunar Eclipse: 3011 Sep 04

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [2] This lunar eclipse is related to two partial solar eclipses of Solar Saros 151.

December 13, 1974 December 24, 1992
SE1974Dec13P.png SE1992Dec24P.png

Tzolkinex

See also

Notes

  1. Hermit Eclipse: Saros cycle 144
  2. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros


Related Research Articles

<span class="mw-page-title-main">March 2026 lunar eclipse</span> Total lunar eclipse of 2 March 2026

A total lunar eclipse will take place on Tuesday, March 3, 2026, the first of two lunar eclipses in 2026.

<span class="mw-page-title-main">September 1997 lunar eclipse</span> Total lunar eclipse September 16, 1997

A total lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, September 16, 1997, the second of two lunar eclipses in 1997. A shallow total eclipse saw the Moon in relative darkness for 1 hour, 1 minute and 30.8 seconds. The Moon was 19.094% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours, 16 minutes and 28.2 seconds in total. The penumbral eclipse lasted for 5 hours, 8 minutes and 20.1 seconds. The partial eclipse lasted for 3 hours, 16 minutes and 28.2 seconds. The total eclipse lasted for 1 hour, 1 minute and 30.8 seconds. Maximum eclipse was at 18:46:39.1 UTC. The moon's apparent diameter was extremely large because occurred only 3 hours and 21 minutes past perigee. The Moon was only 356,986 km of the Earth at greatest eclipse.

<span class="mw-page-title-main">March 1997 lunar eclipse</span> Partial lunar eclipse March 30, 1997

A partial lunar eclipse took place on Monday, March 24, 1997, the first of two lunar eclipses in 1997.

<span class="mw-page-title-main">September 1998 lunar eclipse</span> Penumbral lunar eclipse September 6, 1998

A penumbral lunar eclipse took place on Sunday, September 6, 1998, the last of three lunar eclipses in 1998.

<span class="mw-page-title-main">March 1998 lunar eclipse</span> Penumbral lunar eclipse March 13, 1998

A penumbral lunar eclipse took place on Friday, March 13, 1998, the first of three lunar eclipses in 1998.

<span class="mw-page-title-main">September 2016 lunar eclipse</span> Penumbral lunar eclipse 16 September 2016

A penumbral lunar eclipse took place on 16 September 2016, the last of three lunar eclipses in 2016.

A total lunar eclipse took place on Tuesday, July 6, 1982, the second of three total lunar eclipses in 1982, and the only one that was in the descending node. A dramatic total eclipse lasting 1 hour and 46 minutes plunged the full Moon into deep darkness, as it passed right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse. This was a great spectacle for everyone who saw it. The partial eclipse lasted for 3 hours and 56 minutes in total.

<span class="mw-page-title-main">April 1995 lunar eclipse</span> Partial lunar eclipse April 15, 1995

A partial lunar eclipse took place on Saturday, April 15, 1995, the first of two lunar eclipses in 1995, the second being with a penumbral lunar eclipse on Sunday, October 8.

<span class="mw-page-title-main">October 1995 lunar eclipse</span> Penumbral lunar eclipse October 8, 1995

A penumbral lunar eclipse took place on Sunday, October 8, 1995, the second of two lunar eclipses in 1995, the first was a partial lunar eclipse on Saturday, April 15.

A partial lunar eclipse took place on Saturday, June 25, 1983, the first of two lunar eclipses in 1983 with an umbral eclipse magnitude of 0.33479. A partial lunar eclipse happens when the Earth moves between the Sun and the Full Moon, but they are not precisely aligned. Only part of the Moon's visible surface moves into the dark part of the Earth's shadow. A partial lunar eclipse occurs when the Earth moves between the Sun and Moon but the three celestial bodies do not form a straight line in space. When that happens, a small part of the Moon's surface is covered by the darkest, central part of the Earth's shadow, called the umbra. The rest of the Moon is covered by the outer part of the Earth's shadow called the penumbra. The Earth's shadow on the moon was clearly visible in this eclipse, with 33% of the Moon in shadow; the partial eclipse lasted for 2 hours and 15 minutes.

A penumbral lunar eclipse took place on Tuesday, April 14, 1987, the first of two lunar eclipses in 1987, the second being on October 7, 1987. This subtle penumbral eclipse may have been visible to a skilled observer at maximum eclipse. 77.703% of the Moon's disc was partially shaded by the Earth, which caused a gentle shadow gradient across its disc at maximum; the eclipse as a whole lasted 3 hours, 54 minutes and 12.8 seconds. The Moon was just 4.6 days before perigee, making it 0.5% larger than average.

A penumbral lunar eclipse took place on Tuesday, January 20, 1981, the first of two lunar eclipses in 1981. In a rare total penumbral eclipse, the entire Moon was partially shaded by the Earth, and the shading across the Moon should have been quite visible at maximum eclipse. The penumbral phase lasted for 4 hours and 24 minutes in all, though for most of it, the eclipse was extremely difficult or impossible to see. The moon's apparent diameter was larger because the eclipse occurred 5.2 days after perigee.

A penumbral lunar eclipse took place on Sunday, July 27, 1980, the second of three penumbral lunar eclipses in 1980. This very subtle penumbral eclipse was essentially invisible to the naked eye; though it lasted 2 hours, 17 minutes and 36.3 seconds, just 25.354% of the Moon's disc was in partial shadow. The moon passed in the northern edge of the Earth's penumbral shadow, and was the 70th lunar eclipse of Saros cycle 109.

A penumbral lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, August 26, 1980, the last of three penumbral lunar eclipses in 1980 with a penumbral magnitude of 0.70891. This subtle penumbral eclipse may have been visible to a skilled observer at maximum eclipse. 70.891% of the Moon's disc was partially shaded by the Earth, which caused a gentle shadow gradient across its disc at maximum; the eclipse as a whole lasted 3 hours, 34 minutes and 26 seconds.

<span class="mw-page-title-main">April 1968 lunar eclipse</span> Total lunar eclipse April 13, 1968

A total lunar eclipse took place on Saturday, April 13, 1968, the first of two total eclipses in 1968, the second being on October 6, 1968.

<span class="mw-page-title-main">December 1965 lunar eclipse</span> Penumbral lunar eclipse December 8, 1965

A penumbral lunar eclipse took place on Wednesday, December 8, 1965. At maximum eclipse, 88% of the Moon's disc was partially shaded by the Earth, which caused a slight shadow gradient across its disc; this subtle effect may have been visible to careful observers. No part of the Moon was in complete shadow. The eclipse lasted 4 hours and 1 minute overall.

A total lunar eclipse took place on Monday, September 15, 1913. The moon passed through the center of the Earth's shadow.

A total lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, May 24, 1910 with an umbral eclipse magnitude of 1.09503. A total lunar eclipse takes place when the Earth comes between the Sun and the Moon and its shadow covers the Moon. Eclipse watchers can see the Moon turn red when the eclipse reaches totality. Total eclipses of the Moon happen at Full Moon when the Sun, Earth, and Moon are aligned to form a line. The astronomical term for this type of alignment is syzygy, which comes from the Greek word for being paired together. The Moon does not have its own light but shines because its surface reflects the Sun's rays. During a total lunar eclipse, the Earth comes between the Sun and the Moon and blocks any direct sunlight from reaching the Moon. The Sun casts the Earth's shadow on the Moon's surface. A shallow total eclipse saw the Moon in relative darkness for 49 minutes and 29.5 seconds. The Moon was 9.503% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours, 35 minutes and 22.9 seconds in total.

<span class="mw-page-title-main">Solar eclipse of December 4, 1983</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of the orbit on December 4, 1983. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Cape Verde, Annobón Island of Equatorial Guinea, Gabon, the People's Republic of Congo, Zaire, northern Uganda, southern Sudan, northwestern Kenya, Ethiopia and Somalia. The Sun's altitude was 66°. Occurring 6.5 days before apogee, the Moon's apparent diameter was near the average diameter.

<span class="mw-page-title-main">Solar eclipse of June 11, 1983</span> 20th-century total solar eclipse

A total solar eclipse occurred at the Moon's ascending node of the orbit on June 11, 1983. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 48 hours before perigee, the Moon's apparent diameter was larger.