Demihypercube

Last updated
Alternation of the n-cube yields one of two n-demicubes, as in this 3-dimensional illustration of the two tetrahedra that arise as the 3-demicubes of the 3-cube. CubeAndStel.svg
Alternation of the n-cube yields one of two n-demicubes, as in this 3-dimensional illustration of the two tetrahedra that arise as the 3-demicubes of the 3-cube.

In geometry, demihypercubes (also called n-demicubes, n-hemicubes, and half measure polytopes) are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as hγn for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed. The 2n facets become 2n(n−1)-demicubes, and 2n(n−1)-simplex facets are formed in place of the deleted vertices. [1]

Contents

They have been named with a demi- prefix to each hypercube name: demicube, demitesseract, etc. The demicube is identical to the regular tetrahedron, and the demitesseract is identical to the regular 16-cell. The demipenteract is considered semiregular for having only regular facets. Higher forms don't have all regular facets but are all uniform polytopes.

The vertices and edges of a demihypercube form two copies of the halved cube graph.

An n-demicube has inversion symmetry if n is even.

Discovery

Thorold Gosset described the demipenteract in his 1900 publication listing all of the regular and semiregular figures in n-dimensions above 3. He called it a 5-ic semi-regular. It also exists within the semiregular k21 polytope family.

The demihypercubes can be represented by extended Schläfli symbols of the form h{4,3,...,3} as half the vertices of {4,3,...,3}. The vertex figures of demihypercubes are rectified n-simplexes.

Constructions

They are represented by Coxeter-Dynkin diagrams of three constructive forms:

  1. CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png...CDel node h.png (As an alternated orthotope) s{21,1,...,1}
  2. CDel node h.pngCDel 4.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.png (As an alternated hypercube) h{4,3n−1}
  3. CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.png. (As a demihypercube) {31,n−3,1}

H.S.M. Coxeter also labeled the third bifurcating diagrams as 1k1 representing the lengths of the 3 branches and led by the ringed branch.

An n-demicube, n greater than 2, has n(n−1)/2 edges meeting at each vertex. The graphs below show less edges at each vertex due to overlapping edges in the symmetry projection.

n 1k1  Petrie
polygon
Schläfli symbol Coxeter diagrams
A1n
Bn
Dn
Elements Facets:
Demihypercubes &
Simplexes
Vertex figure
VerticesEdges     FacesCells4-faces5-faces6-faces7-faces8-faces9-faces
2 1−1,1demisquare
(digon)
Complete graph K2.svg
s{2}
h{4}
{31,−1,1}
CDel node h.pngCDel 2c.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2c.pngCDel node.png
22         
2 edges
--
3 101demicube
(tetrahedron)
3-demicube.svg 3-demicube t0 B3.svg
s{21,1}
h{4,3}
{31,0,1}
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.png
464       (6 digons )
4 triangles
Triangle
(Rectified triangle)
4 111 demitesseract
(16-cell)
4-demicube t0 D4.svg 4-demicube t0 B4.svg
s{21,1,1}
h{4,3,3}
{31,1,1}
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
8243216      8 demicubes
(tetrahedra)
8 tetrahedra
Octahedron
(Rectified tetrahedron)
5 121 demipenteract
5-demicube t0 D5.svg 5-demicube t0 B5.svg
s{21,1,1,1}
h{4,33}{31,2,1}
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
168016012026     10 16-cells
16 5-cells
Rectified 5-cell
6 131 demihexeract
6-demicube t0 D6.svg 6-demicube t0 B6.svg
s{21,1,1,1,1}
h{4,34}{31,3,1}
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3224064064025244    12 demipenteracts
32 5-simplices
Rectified hexateron
7 141 demihepteract
7-demicube t0 D7.svg 7-demicube t0 B7.svg
s{21,1,1,1,1,1}
h{4,35}{31,4,1}
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6467222402800162453278   14 demihexeracts
64 6-simplices
Rectified 6-simplex
8 151 demiocteract
8-demicube t0 D8.svg 8-demicube t0 B8.svg
s{21,1,1,1,1,1,1}
h{4,36}{31,5,1}
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
1281792716810752828840321136144  16 demihepteracts
128 7-simplices
Rectified 7-simplex
9 161 demienneract
9-demicube t0 D9.svg 9-demicube t0 B9.svg
s{21,1,1,1,1,1,1,1}
h{4,37}{31,6,1}
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
25646082150437632362882352098882448274 18 demiocteracts
256 8-simplices
Rectified 8-simplex
10 171 demidekeract
10-demicube.svg 10-demicube graph.png
s{21,1,1,1,1,1,1,1,1}
h{4,38}{31,7,1}
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
51211520614401228801424641155846480024000530053220 demienneracts
512 9-simplices
Rectified 9-simplex
...
n 1n−3,1n-demicubes{21,1,...,1}
h{4,3n−2}{31,n−3,1}
CDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.pngCDel 2c.pngCDel node h.png...CDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png...CDel 3.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png...CDel 3.pngCDel node.png
2n−1 2n (n−1)-demicubes
2n−1 (n−1)-simplices
Rectified (n−1)-simplex

In general, a demicube's elements can be determined from the original n-cube: (with Cn,m = mth-face count in n-cube = 2nmn!/(m!(nm)!))

Symmetry group

The stabilizer of the demihypercube in the hyperoctahedral group (the Coxeter group [4,3n−1]) has index 2. It is the Coxeter group [3n−3,1,1] of order , and is generated by permutations of the coordinate axes and reflections along pairs of coordinate axes. [2]

Orthotopic constructions

The rhombic disphenoid inside of a cuboid Rhombic disphenoid.png
The rhombic disphenoid inside of a cuboid

Constructions as alternated orthotopes have the same topology, but can be stretched with different lengths in n-axes of symmetry.

The rhombic disphenoid is the three-dimensional example as alternated cuboid. It has three sets of edge lengths, and scalene triangle faces.

See also

Related Research Articles

Tesseract Four-dimensional analogue of the cube

In geometry, the tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells. The tesseract is one of the six convex regular 4-polytopes.

Hypercube Convex polytope, the n-dimensional analogue of a square and a cube

In geometry, a hypercube is an n-dimensional analogue of a square and a cube. It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in n dimensions is equal to .

Alternation (geometry) Operation on a polyhedron or tiling that removes alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

5-polytope

In five-dimensional geometry, a five-dimensional polytope or 5-polytope is a 5-dimensional polytope, bounded by (4-polytope) facets. Each polyhedral cell being shared by exactly two 4-polytope facets.

5-demicube

In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube (penteract) with alternated vertices removed.

6-cube

In geometry, a 6-cube is a six-dimensional hypercube with 64 vertices, 192 edges, 240 square faces, 160 cubic cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.

6-demicube

In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a 6-cube (hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

7-demicube

In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube (hepteract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

8-demicube

In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

9-cube

In geometry, a 9-cube is a nine-dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4-faces, 2016 5-cube 5-faces, 672 6-cube 6-faces, 144 7-cube 7-faces, and 18 8-cube 8-faces.

In geometry, a uniform k21 polytope is a polytope in k + 4 dimensions constructed from the En Coxeter group, and having only regular polytope facets. The family was named by their Coxeter symbol k21 by its bifurcating Coxeter–Dynkin diagram, with a single ring on the end of the k-node sequence.

In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensions with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group Rn for n>=3.

10-cube

In geometry, a 10-cube is a ten-dimensional hypercube. It has 1024 vertices, 5120 edges, 11520 square faces, 15360 cubic cells, 13440 tesseract 4-faces, 8064 5-cube 5-faces, 3360 6-cube 6-faces, 960 7-cube 7-faces, 180 8-cube 8-faces, and 20 9-cube 9-faces.

Rectified 5-simplexes

In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.

2<sub> 21</sub> polytope

In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope.

4<sub> 21</sub> polytope

In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 8-ic semi-regular figure.

6-polytope

In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets.

Cantic 5-cube

In geometry of five dimensions or higher, a cantic 5-cube, cantihalf 5-cube, truncated 5-demicube is a uniform 5-polytope, being a truncation of the 5-demicube. It has half the vertices of a cantellated 5-cube.

Runcic 5-cubes

In six-dimensional geometry, a runcic 5-cube or is a convex uniform 5-polytope. There are 2 runcic forms for the 5-cube. Runcic 5-cubes have half the vertices of runcinated 5-cubes.

Cantic 7-cube

In seven-dimensional geometry, a cantic 7-cube or truncated 7-demicube as a uniform 7-polytope, being a truncation of the 7-demicube.

References

  1. Regular and semi-regular polytopes III, p. 315-316
  2. "week187". math.ucr.edu. Retrieved 20 April 2018.
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds