Digallane

Last updated
Digallane
Digallane-2D.png
Digallane-3D-balls.png
Digallane-3D-vdW.png
Names
IUPAC name
digallane(6)
Other names
Di-μ-hydrido-tetrahydridodigallium
Gallane dimer
Identifiers
3D model (JSmol)
  • InChI=1S/2Ga.6H
    Key: GFQCQFDOQMRGIQ-UHFFFAOYSA-N
  • [GaH2]1[H][GaH2][H]1
Properties
Ga2H6
Molar mass 145.494 g/mol
AppearanceWhite solid or colorless gas
Melting point −50 °C (−58 °F; 223 K) (sublimes)
Boiling point 0 °C (32 °F; 273 K) (decomposes)
Reacts to form gallium(III) hydroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Digallane (systematically named digallane(6)) is an inorganic compound with the chemical formula GaH
2
(H)
2
GaH
2
(also written [{GaH
2
(μ-H)}
2
]
or [Ga
2
H
6
]
). It is the dimer of the monomeric compound gallane. The eventual preparation of the pure compound, reported in 1989, [1] [2] was hailed as a "tour de force." [3] Digallane had been reported as early as 1941 by Wiberg; [4] however, this claim could not be verified by later work by Greenwood and others. [5]

Contents

Preparation

A two-stage approach proved to be the key to successful synthesis of pure digallane. Firstly the dimeric monochlorogallane, (H2GaCl)2 (containing bridging chlorine atoms and thus formulated as (H2Ga(μ-Cl))2) was prepared via the hydrogenation of gallium trichloride, GaCl3, with Me 3SiH. This step was followed by a further reduction with LiGaH4, solvent free, at −23 °C, to produce digallane, Ga2H6 in low yield.

Ga2Cl6 + 4 Me3SiH → (H2GaCl)2 + 4 Me3SiCl
1/2 (H2GaCl)2 + LiGaH4 → Ga2H6 + LiCl

Digallane is volatile and condenses at −50 °C into a white solid.

Structure and bonding

Electron diffraction measurements of the vapour at 255 K established that digallane is structurally similar to diborane with 2 bridging hydrogen atoms [2] (so-called three-center two-electron bonds). The terminal Ga—H bond length is 152 pm, the Ga—H bridging is 171 pm and the Ga—H—Ga angle is 98°. The Ga—Ga distance is 258 pm. The 1H NMR spectrum of a solution of digallane in toluene shows two peaks attributable to terminal and bridging hydrogen atoms. [2]

In the solid state, digallane appears to adopt a polymeric or oligomeric structure. The vibrational spectrum is consistent with tetramer (i.e. (GaH3)4). [2] The vibrational data indicate the presence of terminal hydride ligands. In contrast, the hydrogen atoms are all bridging in α-alane, a high-melting, relatively stable polymeric form of aluminium hydride wherein the aluminium centers are 6-coordinated. Digallane decomposes at ambient temperatures:

Ga2H6 → 2 Ga + 3 H2

Related Research Articles

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

In chemistry, a hydride is formally the anion of hydrogen( H). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

<span class="mw-page-title-main">Diborane</span> Chemical compound

Diborane(6), generally known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Diborane is a key boron compound with a variety of applications. It has attracted wide attention for its electronic structure. Several of its derivatives are useful reagents.

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

<span class="mw-page-title-main">Sodium hydride</span> Chemical compound

Sodium hydride is the chemical compound with the empirical formula NaH. This alkali metal hydride is primarily used as a strong yet combustible base in organic synthesis. NaH is a saline (salt-like) hydride, composed of Na+ and H ions, in contrast to molecular hydrides such as borane, methane, ammonia, and water. It is an ionic material that is insoluble in organic solvents (although soluble in molten Na), consistent with the fact that H ions do not exist in solution. Because of the insolubility of NaH, all reactions involving NaH occur at the surface of the solid.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin compounds or stannanes are chemical compounds based on tin with hydrocarbon substituents. Organotin chemistry is part of the wider field of organometallic chemistry. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

<span class="mw-page-title-main">Bridging ligand</span> Ligand which connects two or more (usually metal) atoms in a coordination complex

In coordination chemistry, a bridging ligand is a ligand that connects two or more atoms, usually metal ions. The ligand may be atomic or polyatomic. Virtually all complex organic compounds can serve as bridging ligands, so the term is usually restricted to small ligands such as pseudohalides or to ligands that are specifically designed to link two metals.

<span class="mw-page-title-main">Aluminium hydride</span> Chemical compound

Aluminium hydride (also known as alane and alumane) is an inorganic compound with the formula AlH3. Alane and its derivatives are common reducing (hydride addition) reagents in organic synthesis that are used in solution at both laboratory and industrial scales. In solution—typically in etherial solvents such tetrahydrofuran or diethyl ether—aluminium hydride forms complexes with Lewis bases, and reacts selectively with particular organic functional groups (e.g., with carboxylic acids and esters over organic halides and nitro groups), and although it is not a reagent of choice, it can react with carbon-carbon multiple bonds (i.e., through hydroalumination). Given its density, and with hydrogen content on the order of 10% by weight, some forms of alane are, as of 2016, active candidates for storing hydrogen and so for power generation in fuel cell applications, including electric vehicles. As of 2006 it was noted that further research was required to identiy an efficient, economical way to reverse the process, regenerating alane from spent aluminium product.

Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H-like character (e.g., ZnH2).

<span class="mw-page-title-main">Beryllium hydride</span> Chemical compound

Beryllium hydride is an inorganic compound with the chemical formula n. This alkaline earth hydride is a colourless solid that is insoluble in solvents that do not decompose it. Unlike the ionically bonded hydrides of the heavier Group 2 elements, beryllium hydride is covalently bonded.

Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 is the 2005 version of Nomenclature of Inorganic Chemistry. It is a collection of rules for naming inorganic compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC).

<span class="mw-page-title-main">Pentacarbonylhydridomanganese</span> Chemical compound

Pentacarbonylhydridomanganese is an organometallic compound with formula HMn(CO)5. This compound is one of the most stable "first-row" transition metal hydrides.

<span class="mw-page-title-main">Gallane</span> Chemical compound

Gallane, also systematically named trihydridogallium, is an inorganic compound of gallium with the chemical formula GaH
3
. It is a photosensitive, colourless gas that cannot be concentrated in pure form. Gallane is both the simplest member of the gallanes, and the prototype of the monogallanes. It has no economic uses, and is only intentionally produced for academic reasons.

<span class="mw-page-title-main">Metal carbonyl hydride</span>

Metal carbonyl hydrides are complexes of transition metals with carbon monoxide and hydride as ligands. These complexes are useful in organic synthesis as catalysts in homogeneous catalysis, such as hydroformylation.

Group 13 hydrides are chemical compounds containing group 13-hydrogen bonds.

<span class="mw-page-title-main">Pentamethylantimony</span> Chemical compound

Pentamethylantimony or pentamethylstiborane is an organometalllic compound containing five methyl groups bound to an antimony atom with formula Sb(CH3)5. It is an example of a hypervalent compound. The molecular shape is trigonal bipyramid. Some other antimony(V) organometallic compounds include pentapropynylantimony (Sb(CCCH3)5) and pentaphenyl antimony (Sb(C6H5)5). Other known pentamethyl-pnictides include pentamethylbismuth and pentamethylarsenic.

Germanium(II) hydrides, also called germylene hydrides, are a class of Group 14 compounds consisting of low-valent germanium and a terminal hydride. They are also typically stabilized by an electron donor-acceptor interaction between the germanium atom and a large, bulky ligand.

Lithium tetrahydridogallate is the inorganic compound with formula LiGaH4. It is a white solid similar to but less thermally robust than lithium aluminium hydride.

<span class="mw-page-title-main">Aluminium compounds</span>

Aluminium (or aluminum) combines characteristics of pre- and post-transition metals. Since it has few available electrons for metallic bonding, like its heavier group 13 congeners, it has the characteristic physical properties of a post-transition metal, with longer-than-expected interatomic distances. Furthermore, as Al3+ is a small and highly charged cation, it is strongly polarizing and aluminium compounds tend towards covalency; this behaviour is similar to that of beryllium (Be2+), an example of a diagonal relationship. However, unlike all other post-transition metals, the underlying core under aluminium's valence shell is that of the preceding noble gas, whereas for gallium and indium it is that of the preceding noble gas plus a filled d-subshell, and for thallium and nihonium it is that of the preceding noble gas plus filled d- and f-subshells. Hence, aluminium does not suffer the effects of incomplete shielding of valence electrons by inner electrons from the nucleus that its heavier congeners do. Aluminium's electropositive behavior, high affinity for oxygen, and highly negative standard electrode potential are all more similar to those of scandium, yttrium, lanthanum, and actinium, which have ds2 configurations of three valence electrons outside a noble gas core: aluminium is the most electropositive metal in its group. Aluminium also bears minor similarities to the metalloid boron in the same group; AlX3 compounds are valence isoelectronic to BX3 compounds (they have the same valence electronic structure), and both behave as Lewis acids and readily form adducts. Additionally, one of the main motifs of boron chemistry is regular icosahedral structures, and aluminium forms an important part of many icosahedral quasicrystal alloys, including the Al–Zn–Mg class.

Gallium compounds are found primarily in the +3 oxidation state. The +1 oxidation state is also found in some compounds, although it is less common than it is for gallium's heavier congeners indium and thallium. For example, the very stable GaCl2 contains both gallium(I) and gallium(III) and can be formulated as GaIGaIIICl4; in contrast, the monochloride is unstable above 0 °C, disproportionating into elemental gallium and gallium(III) chloride. Compounds containing Ga–Ga bonds are true gallium(II) compounds, such as GaS (which can be formulated as Ga24+(S2−)2) and the dioxan complex Ga2Cl4(C4H8O2)2.

References

  1. Anthony J. Downs; Michael J. Goode; Colin R. Pulham (1989). "Gallane at last!". Journal of the American Chemical Society. 111 (5): 1936–1937. doi:10.1021/ja00187a090.
  2. 1 2 3 4 Pulham C.R.; Downs A.J.; Goode M.J; Rankin D.W.H. Roberson H.E. (1991). "Gallane: Synthesis, Physical and Chemical Properties, and Structure of the Gaseous Molecule Ga2H6 As Determined by Electron Diffraction". Journal of the American Chemical Society. 113 (14): 5149–5162. doi:10.1021/ja00014a003.
  3. N.N. Greenwood (2001). "Main group element chemistry at the millennium". J. Chem. Soc., Dalton Trans. (14): 2055–2066. doi:10.1039/b103917m.
  4. Wiberg E.; Johannsen T. (1941). "Über einen flüchtigen Galliumwasserstoff der Formel Ga2H6 und sein Tetramethylderivat". Naturwissenschaften. 29 (21): 320. Bibcode:1941NW.....29..320W. doi:10.1007/BF01479551. S2CID   44840674.
  5. Shriver, D. F.; Parry, R. W.; Greenwood, N. N.; Storr, A; Wallbridge, M. G. H. (1963). "Some Observations Relative to Digallane". Inorg. Chem. 2 (4): 867–868. doi:10.1021/ic50008a053.