Digital Enhanced Cordless Telecommunications

Last updated

Motorola IT.6 IT 6.1T BLACK Wooden Background.jpg
Motorola IT.6

Digital Enhanced Cordless Telecommunications (Digital European Cordless Telecommunications), usually known by the acronym DECT, is a standard primarily used for creating cordless telephone systems. It originated in Europe, where it is the universal standard, replacing earlier cordless phone standards, such as 900  MHz CT1 and CT2. [1]

An acronym is a word or name formed as an abbreviation from the initial components of a phrase or a word, usually individual letters and sometimes syllables.

Cordless telephone

A cordless telephone or portable telephone is a telephone in which the handset is portable and communicates with the body of the phone by radio, instead of being attached by a cord. The base station is connected to the telephone network through a telephone line as a corded telephone is, and also serves as a charger to charge the handset's batteries. The range is limited, usually to the same building or some short distance from the base station.

Europe Continent in the Northern Hemisphere and mostly in the Eastern Hemisphere

Europe is a continent located entirely in the Northern Hemisphere and mostly in the Eastern Hemisphere. It is bordered by the Arctic Ocean to the north, the Atlantic Ocean to the west and the Mediterranean Sea to the south. It comprises the westernmost part of Eurasia.

Contents

Beyond Europe, it has been adopted by Australia, and most countries in Asia and South America. North American adoption was delayed by United States radio frequency regulations. This forced development of a variation of DECT, called DECT 6.0, using a slightly different frequency range which makes these units incompatible with systems intended for use in other areas, even from the same manufacturer. DECT has almost universally replaced other standards in most countries where it is used, with the exception of North America.

Australia Country in Oceania

Australia, officially the Commonwealth of Australia, is a sovereign country comprising the mainland of the Australian continent, the island of Tasmania and numerous smaller islands. It is the largest country in Oceania and the world's sixth-largest country by total area. The neighbouring countries are Papua New Guinea, Indonesia and East Timor to the north; the Solomon Islands and Vanuatu to the north-east; and New Zealand to the south-east. The population of 25 million is highly urbanised and heavily concentrated on the eastern seaboard. Australia's capital is Canberra, and its largest city is Sydney. The country's other major metropolitan areas are Melbourne, Brisbane, Perth and Adelaide.

Asia Earths largest and most populous continent, located primarily in the Eastern and Northern Hemispheres

Asia is Earth's largest and most populous continent, located primarily in the Eastern and Northern Hemispheres. It shares the continental landmass of Eurasia with the continent of Europe and the continental landmass of Afro-Eurasia with both Europe and Africa. Asia covers an area of 44,579,000 square kilometres (17,212,000 sq mi), about 30% of Earth's total land area and 8.7% of the Earth's total surface area. The continent, which has long been home to the majority of the human population, was the site of many of the first civilizations. Asia is notable for not only its overall large size and population, but also dense and large settlements, as well as vast barely populated regions. Its 4.5 billion people constitute roughly 60% of the world's population.

South America A continent in the Western Hemisphere, and mostly in the Southern Hemisphere

South America is a continent in the Western Hemisphere, mostly in the Southern Hemisphere, with a relatively small portion in the Northern Hemisphere. It may also be considered a subcontinent of the Americas, which is how it is viewed in the Spanish and Portuguese-speaking regions of the Americas. The reference to South America instead of other regions has increased in the last decades due to changing geopolitical dynamics.

DECT was originally intended for fast roaming between networked base stations and the first DECT product was Net3 wireless LAN. However, its most popular application is single-cell cordless phones connected to traditional analog telephone, primarily in home and small office systems, though gateways with multi-cell DECT and/or DECT repeaters are also available in many private branch exchange (PBX) systems for medium and large businesses produced by Panasonic, Mitel, Gigaset, Snom, BT Business, Spectralink, and RTX Telecom. DECT can also be used for purposes other than cordless phones, such as baby monitors and industrial sensors. The ULE Alliance's DECT ULE and its HAN FUN protocol [2] are variants tailored for home security, automation, and the internet of things (IoT).

Net3 Wireless networking system

Net3 was a Wifi-like system developed, manufactured and commercialised by Olivetti in the early 1990s. It could wirelessly connect PCs to an Ethernet fixed LAN at a speed of up to 512kbit/s, over a very wide area. It was a micro-cellular system, in which each base station had an effective range of about 100m indoors, 300m outdoors, and the system supported seamless handover between base stations.

Plain old telephone service (POTS), or plain ordinary telephone service, is a retronym for voice-grade telephone service employing analog signal transmission over copper loops. POTS was the standard service offering from telephone companies from 1876 until 1988 in the United States when the Integrated Services Digital Network (ISDN) Basic Rate Interface (BRI) was introduced, followed by cellular telephone systems, and voice over IP (VoIP). POTS remains the basic form of residential and small business service connection to the telephone network in many parts of the world. The term reflects the technology that has been available since the introduction of the public telephone system in the late 19th century, in a form mostly unchanged despite the introduction of Touch-Tone dialing, electronic telephone exchanges and fiber-optic communication into the public switched telephone network (PSTN).

Panasonic Japanese multinational electronics corporation

Panasonic Corporation, formerly known as Matsushita Electric Industrial Co., Ltd., is a Japanese multinational electronics corporation headquartered in Kadoma, Osaka, Japan.

The DECT standard includes the generic access profile (GAP), a common interoperability profile for simple telephone capabilities, which most manufacturers implement. GAP-conformance enables DECT handsets and bases from different manufacturers to interoperate at the most basic level of functionality, that of making and receiving calls.

The Generic Access Profile (GAP) describes a set of mandatory requirements to allow any conforming DECT Fixed Part (base) to interoperate with any conforming DECT Portable Part (handset) to provide basic telephony services when attached to a 3.1 kHz telephone network.

New Generation DECT (NG-DECT) standard, marketed as CAT-iq by the DECT Forum, provides a common set of advanced capabilities for handsets and base stations. CAT-iq allows interchangeability across base stations and handsets from different manufacturers, while maintaining backward-compatibility with GAP equipment. It also requires mandatory support for wideband audio.

Cordless Advanced Technology—internet and quality (CAT-iq) is a technology initiative from the Digital Enhanced Cordless Telecommunications (DECT) Forum, based on ETSI TS 102 527 New Generation DECT (NG-DECT) European standard series.

Wideband audio, also known as wideband voice or HD voice, is high definition voice quality for telephony audio, contrasted with standard digital telephony "toll quality". It extends the frequency range of audio signals transmitted over telephone lines, resulting in higher quality speech. The range of the human voice extends from 80 Hz to 14 kHz but traditional, voiceband or narrowband telephone calls limit audio frequencies to the range of 300 Hz to 3.4 kHz. Wideband audio relaxes the bandwidth limitation and transmits in the audio frequency range of 50 Hz to 7 kHz or even up to 22 kHz. In addition, some wideband codecs may use a higher audio bit depth of 16-bits to encode samples, also resulting in much better voice quality.

Standards history

The DECT standard was developed by ETSI in several phases, the first of which took place between 1988 and 1992 when the first round of standards were published. These were the ETS 300-175 series in nine parts defining the air interface, and ETS 300-176 defining how the units should be type approved. A technical report, ETR-178, was also published to explain the standard. [3] Subsequent standards were developed and published by ETSI to cover interoperability profiles and standards for testing.

ETSI nonprofit european standards organization

The European Telecommunications Standards Institute (ETSI) is an independent, not-for-profit, standardization organization in the telecommunications industry in Europe, headquartered in Sophia-Antipolis, France, with worldwide projection. ETSI produces globally-applicable standards for Information and Communications Technologies (ICT), including fixed, mobile, radio, converged, broadcast and internet technologies.

Named Digital European Cordless Telephone at its launch by CEPT in November 1987; its name was soon changed to Digital European Cordless Telecommunications, following a suggestion by Enrico Tosato of Italy, to reflect its broader range of application including data services. In 1995, due to its more global usage, the name was changed from European to Enhanced. DECT is recognized by the ITU as fulfilling the IMT-2000 requirements and thus qualifies as a 3G system. Within the IMT-2000 group of technologies, DECT is referred to as IMT-2000 Frequency Time (IMT-FT).

DECT was developed by ETSI but has since been adopted by many countries all over the World. The original DECT frequency band (1880–1900 MHz) is used in all countries in Europe. Outside Europe, it is used in most of Asia, Australia and South America. In the United States, the Federal Communications Commission in 2005 changed channelization and licensing costs in a nearby band (1920–1930 MHz, or 1.9  GHz), known as Unlicensed Personal Communications Services (UPCS), allowing DECT devices to be sold in the U.S. with only minimal changes. These channels are reserved exclusively for voice communication applications and therefore are less likely to experience interference from other wireless devices such as baby monitors and wireless networks.

The New Generation DECT (NG-DECT) standard was first published in 2007; [4] it was developed by ETSI with guidance from the Home Gateway Initiative through the DECT Forum. [5] The ETSI TS 102 527 series comes in five parts and covers wideband audio and mandatory interoperability features. They were preceded by an explanatory technical report, ETSI TR 102 570. [6] The DECT Forum maintains the CAT-iq trademark and certification program; CAT-iq wideband voice profiles 1.0 and 2.0/2.1 are based on the relevant parts of ETSI TS 102 527.

The DECT Ultra Low Energy (DECT ULE) standard was announced in January 2011 and the first commercial products were launched later that year by Dialog Semiconductor. The standard was created to enable home automation, security, healthcare and energy monitoring applications that are battery powered. Like DECT, DECT ULE standard uses the 1.9 GHz band, and so suffers less interference than Zigbee, Bluetooth, or Wi-Fi from microwave ovens, which all operate in the unlicensed 2.4 GHz ISM band. DECT ULE uses a simple star network topology, so many devices in the home are connected to a single control unit.

Future revisions of the standard (tentatively termed DECT-2020) are expected to include high reliability low-latency DECT ULE for industry machine-to-machine application, high bitrate ultra reliable low latency protocols for professional wireless audio applications using point-to-point or multicast communications, high-throughput QAM-256 modulation; a long term evolution to OFDM (downlink) and OFDMA/SC-FDMA (uplink) modulation with a downlink rate of 1 Gbit/s (tentatively termed DECT-5G) is being researched by the ETSI DECT committee. [7] The effort aims to adopt the updated DECT protocols into the upcoming IMT-2020 standard, which defines Ultra-Reliable Low-Latency Communications (URLLC), Massive Machine Type Communications (MMTC), and enhanced Mobile Broadband (eMBB) services. [8]

OpenD is an open-source framework designed to provide a complete software implementation of DECT ULE protocols on reference hardware from Dialog Semiconductor and DSP Group; the project is maintained by the DECT forum. [9] [10]

Application

The DECT standard originally envisaged three major areas of application: [3]

Of these, the domestic application (cordless home telephones) has been extremely successful. The enterprise PABX market had some success, and all the major PABX vendors have offered DECT access options. The public access application did not succeed, since public cellular networks rapidly out-competed DECT by coupling their ubiquitous coverage with large increases in capacity and continuously falling costs. There has been only one major installation of DECT for public access: in early 1998 Telecom Italia launched a wide-area DECT network known as "Fido" after much regulatory delay, covering major cities in Italy. [11] The service was promoted for only a few months and, having peaked at 142,000 subscribers, was shut down in 2001. [12]

DECT has also been used for wireless local loop as a substitute for copper pairs in the "last mile" in countries such as India and South Africa. By using directional antennas and sacrificing some traffic capacity, cell coverage could extend to over 10 kilometres (6.2 mi). One example is the corDECT standard.

The first data of DECT was Net3 wireless LAN system by Olivetti, launched in 1993 and discontinued in 1995. A precursor to Wi-Fi, Net3 was a micro-cellular data-only network with fast roaming between base stations and 520 kbit/s transmission rates.

Data applications such as electronic cash terminals, traffic lights, and remote door openers [13] also exist, but have been eclipsed by Wi-Fi, 3G and 4G which compete with DECT for both voice and data.

DECT 6.0

DECT 6.0 is a North American marketing term for DECT devices manufactured for the United States and Canada operating at 1.9 GHz. The "6.0" does not equate to a spectrum band; it was decided the term DECT 1.9 might have confused customers who equate larger numbers (such as the 2.4 and 5.8 in existing 2.4 GHz and 5.8 GHz cordless telephones) with later products. The term was coined by Rick Krupka of the DECT USA Working Group / Siemens ICM.

In North America, DECT suffers from major deficits, especially in comparison to DECT elsewhere, since the UPCS band (1920–1930 MHz) is not free from heavy interference and only half as wide as that used in Europe (1880–1900 MHz), the 4 mW average transmission power limits the range to far less than the 10 mW permitted in Europe, and the commonplace lack of GAP compatibility among US vendors binds companies to a single vendor.

Before 1.9 GHz band was approved by the FCC in 2005, DECT could only operate in unlicensed Region 2 2.4 GHz and 900 MHz ISM bands; some users of Uniden WDECT 2.4 GHz phones reported interoperablity issues with Wi-Fi equipment. [14] [15] [ unreliable source? ]

North-American DECT 6.0 products may not be used in Europe, Sri Lanka [16] and Africa, as they cause and suffer from interference with the European, Sri Lankan and South African cellular networks. Use of such products is prohibited by European Telecommunications Authorities, Telecommunications Regulatory Commission of Sri Lanka [17] and the Independent Communication Authority of South Africa. European DECT products may not be used in the United States and Canada, as they likewise cause and suffer from interference with American and Canadian cellular networks, and use is prohibited by the Federal Communication Commission and Industry Canada.

DECT 8.0 HD is a marketing designation for North American DECT devices certified with CAT-iq 2.0 "Multi Line" profile. [18]

NG-DECT/CAT-iq

Cordless Advanced Technology—internet and quality (CAT-iq) is a certification program maintained by the DECT Forum. It is based on New Generation DECT (NG-DECT) series of standards from ETSI.

NG-DECT/CAT-iq contains features that expand the generic GAP profile with mandatory support for high quality wideband voice, enhanced security, calling party identification, multiple lines, parallel calls, and similar functions to facilitate VoIP calls through SIP and H.323 protocols.

There are several CAT-iq profiles which define supported voice features:

CAT-iq allows any DECT handset to communicate with a DECT base from a different vendor, providing full interoperability. CAT-iq 2.0/2.1 feature set is designed to support IP-DECT base stations found in office IP-PBX and home gateways.

Technical features

The DECT standard specifies a means for a portable phone or "Portable Part" to access a fixed telephone network via radio. Base station or "Fixed Part" is used to terminate the radio link and provide access to a fixed line. A gateway is then used to connect calls to the fixed network, such as public switched telephone network (telephone jack), office PBX, ISDN, or VoIP over Ethernet connection.

Typical abilities of a domestic DECT Generic Access Profile (GAP) system include multiple handsets to one base station and one phone line socket. This allows several cordless telephones to be placed around the house, all operating from the same telephone jack. Additional handsets have a battery charger station that does not plug into the telephone system. Handsets can in many cases be used as intercoms, communicating between each other, and sometimes as walkie-talkies, intercommunicating without telephone line connection.

DECT operates in the 1880–1900 MHz band and defines ten frequency channels from 1881.792 MHz to 1897.344 MHz with a band gap of 1728 kHz.

DECT operates as a multicarrier frequency division multiple access (FDMA) and time division multiple access (TDMA) system. This means that the radio spectrum is divided into physical carriers in two dimensions: frequency and time. FDMA access provides up to 10 frequency channels, and TDMA access provides 24 time slots per every frame of 10 ms. DECT uses time division duplex (TDD), which means that down- and uplink use the same frequency but different time slots. Thus a base station provides 12 duplex speech channels in each frame, with each time slot occupying any available channel – thus 10 × 12 = 120 carriers are available, each carrying 32 kbit/s.

DECT also provides frequency-hopping spread spectrum over TDMA/TDD structure for ISM band applications. If frequency-hopping is avoided, each base station can provide up to 120 channels in the DECT spectrum before frequency reuse. Each timeslot can be assigned to a different channel in order to exploit advantages of frequency hopping and to avoid interference from other users in asynchronous fashion. [19]

DECT allows interference-free wireless operation to around 100 metres (110 yd) outdoors, much less indoors when separated by walls. Operates clearly in common congested domestic radio traffic situations, for instance, generally immune to interference from other DECT systems, Wi-Fi networks, video senders, Bluetooth technology, baby monitors and other wireless devices.

Technical properties

DECT pulse duration measurement (100 Hz, 10 ms) on channel 8 Pulse duration measurement of a DECT phone.jpg
DECT pulse duration measurement (100 Hz, 10 ms) on channel 8

ETSI standards documentation ETSI EN 300 175 parts 1–8 (DECT), ETSI EN 300 444 (GAP) and ETSI TS 102 527 parts 1–5 (NG-DECT) prescribe the following technical properties:

Physical layer

The DECT physical layer uses FDMA/TDMA access with TDD.

Gaussian frequency-shift keying (GFSK) modulation is used: the binary one is coded with a frequency increase by 288 kHz, and the binary zero with frequency decrease of 288 kHz. With high quality connections, 2-, 4- or 8-level Differential BPSK modulation (DBPSK, DQPSK or D8PSK), which is similar to QAM-2, QAM-4 and QAM-8, can be used to transmit 1, 2, or 3 bits per each symbol. QAM-16 and QAM-64 modulations with 4 and 8 bits per symbol can be used for user data (B-field) only, with resulting transmission speeds of up to 5,068 Mbit/s.

DECT provides dynamic channel selection and assignment; the choice of transmission frequency and time slot is always made by the mobile terminal. In case of interference in the selected frequency channel, the mobile terminal (possibly from suggestion by the base station) can initiate either intracell handover, selecting another channel/transmitter on the same base, or intercell handover, selecting a different base station altogether. For this purpose, DECT devices scan all idle channels at regular 30 s intervals to generate a received signal strength indication (RSSI) list. When a new channel is required, the mobile terminal (PP) or base station (FP) selects a channel with the minimum interference from the RSSI list.

The maximum allowed power for portable equipment as well as base stations is 250 mW. A portable device radiates an average of about 10 mW during a call as it is only using one of 24 time slots to transmit. In Europe, the power limit was expressed as effective radiated power (ERP), rather than the more commonly used equivalent isotropically radiated power (EIRP), permitting the use of high-gain directional antennas to produce much higher EIRP and hence long ranges.

The DECT media access control layer controls the physical layer and provides connection oriented, connectionless and broadcast services to the higher layers.

The DECT data link layer uses Link Access Protocol Control (LAPC), a specially designed variant of the ISDN data link protocol called LAPD. They are based on HDLC.

GFSK modulation uses a bit rate of 1152 kbit/s, with a frame of 10 ms (11520 bits) which contains 24 time slots. Each slots contains 480 bits, some of which are reserved for physical packets and the rest is guard space. Slots 0–11 are always used for downlink (FP to PP) and slots 12–23 are used for uplink (PP to FP).

There are several combinations of slots and corresponding types of physical packets with GFSK modulation:

The 420/424 bits of a GFSK basic packet (P32) contain the following fields:

The resulting full data rate is 32 kbit/s, available in both directions.

Network layer

The DECT network layer always contains the following protocol entities:

Optionally it may also contain others:

All these communicate through a Link Control Entity (LCE).

The call control protocol is derived from ISDN DSS1, which is a Q.931-derived protocol. Many DECT-specific changes have been made.[ specify ]

The mobility management protocol includes the management of identities, authentication, location updating, on-air subscription and key allocation. It includes many elements similar to the GSM protocol, but also includes elements unique to DECT.

Unlike the GSM protocol, the DECT network specifications do not define cross-linkages between the operation of the entities (for example, Mobility Management and Call Control). The architecture presumes that such linkages will be designed into the interworking unit that connects the DECT access network to whatever mobility-enabled fixed network is involved. By keeping the entities separate, the handset is capable of responding to any combination of entity traffic, and this creates great flexibility in fixed network design without breaking full interoperability.

DECT GAP is an interoperability profile for DECT. The intent is that two different products from different manufacturers that both conform not only to the DECT standard, but also to the GAP profile defined within the DECT standard, are able to interoperate for basic calling. The DECT standard includes full testing suites for GAP, and GAP products on the market from different manufacturers are in practice interoperable for the basic functions.

Security

The DECT media access control layer includes authentication of handsets to the base station using the DECT Standard Authentication Algorithm (DSAA). When registering the handset on the base, both record a shared 128-bit Unique Authentication Key (UAK). The base can request authentication by sending two random numbers to the handset, which calculates the response using the shared 128-bit key. The handset can also request authentication by sending a 64-bit random number to the base, which chooses a second random number, calculates the response using the shared key, and sends it back with the second random number.

The standard also provides encryption services with the DECT Standard Cipher (DSC). The encryption is fairly weak, using a 35-bit initialization vector and encrypting the voice stream with 64-bit encryption. While most of the DECT standard is publicly available, the part describing the DECT Standard Cipher was only available under a non-disclosure agreement to the phones' manufacturers from ETSI.

The properties of the DECT protocol make it hard to intercept a frame, modify it and send it later again, as DECT frames are based on time-division multiplexing and need to be transmitted at a specific point in time. [21] Unfortunately very few DECT devices on the market implemented authentication and encryption procedures [21] [22] – and even when encryption was used by the phone, it was possible to implement a man-in-the-middle attack impersonating a DECT base station and revert to unencrypted mode – which allows calls to be listened to, recorded, and re-routed to a different destination. [22] [23] [24]

After an unverified report of a successful attack in 2002, [25] [26] members of the deDECTed.org project actually did reverse engineer the DECT Standard Cipher in 2008, [22] and as of 2010 there has been a viable attack on it that can recover the key. [27]

In 2012, an improved authentication algorithm, the DECT Standard Authentication Algorithm 2 (DSAA2), and improved version of the encryption algorithm, the DECT Standard Cipher 2 (DSC2), both based on AES 128-bit encryption, were included as optional in the NG-DECT/CAT-iq suite.

DECT Forum also launched the DECT Security certification program which mandates the use of previously optional security features in the GAP profile, such as early encryption and base authentication.

Profiles

Various access profiles have been defined in the DECT standard:

DECT for data networks

Other interoperability profiles exist in the DECT suite of standards, and in particular the DPRS (DECT Packet Radio Services) bring together a number of prior interoperability profiles for the use of DECT as a wireless LAN and wireless internet access service. With good range (up to 200 metres (660 ft) indoors and 6 kilometres (3.7 mi) using directional antennae outdoors), dedicated spectrum, high interference immunity, open interoperability and data speeds of around 500 kbit/s, DECT appeared at one time to be a superior alternative to Wi-Fi. [28] The protocol capabilities built into the DECT networking protocol standards were particularly good at supporting fast roaming in the public space, between hotspots operated by competing but connected providers. The first DECT product to reach the market, Olivetti's Net3, was a wireless LAN, and German firms Dosch & Amand and Hoeft & Wessel built niche businesses on the supply of data transmission systems based on DECT.

However, the timing of the availability of DECT, in the mid-1990s, was too early to find wide application for wireless data outside niche industrial applications. Whilst contemporary providers of Wi-Fi struggled with the same issues, providers of DECT retreated to the more immediately lucrative market for cordless telephones. A key weakness was also the inaccessibility of the U.S. market, due to FCC spectrum restrictions at that time. By the time mass applications for wireless Internet had emerged, and the U.S. had opened up to DECT, well into the new century, the industry had moved far ahead in terms of performance and DECT's time as a technically competitive wireless data transport had passed.

Health and safety

DECT uses UHF radio, similar to mobile phones, baby monitors, Wi-Fi, and other cordless telephone technologies. The UK Health Protection Agency (HPA) claims that due to a mobile phone's adaptive power ability, a DECT cordless phone's radiation could actually exceed the radiation of a mobile phone. A DECT cordless phone's radiation has an average output power of 10 mW but is in the form of 100 bursts per second of 250 mW, a strength comparable to some mobile phones. [29] Most studies have been unable to demonstrate any link to health effects, or have been inconclusive. Electromagnetic fields may have an effect on protein expression in laboratory settings [30] but have not yet been demonstrated to have clinically significant effects in real-world settings. The World Health Organization has issued a statement on medical effects of mobile phones which acknowledges that the longer term effects (over several decades) require further research. [31]

See also

Related Research Articles

GSM standard to describe protocols for second generation digital cellular networks used by mobile phones

GSM is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. It was first deployed in Finland in December 1991. As of 2014, it has become the global standard for mobile communications – with over 90% market share, operating in over 193 countries and territories.

General Packet Radio Service (GPRS) is a packet oriented mobile data standard on the 2G and 3G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

The industrial, scientific and medical (ISM) radio bands are radio bands reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than telecommunications. Examples of applications in these bands include radio-frequency process heating, microwave ovens, and medical diathermy machines. The powerful emissions of these devices can create electromagnetic interference and disrupt radio communication using the same frequency, so these devices were limited to certain bands of frequencies. In general, communications equipment operating in these bands must tolerate any interference generated by ISM applications, and users have no regulatory protection from ISM device operation.

Time-division multiple access channel access method for shared medium networks

Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. TDMA is used in the digital 2G cellular systems such as Global System for Mobile Communications (GSM), IS-136, Personal Digital Cellular (PDC) and iDEN, and in the Digital Enhanced Cordless Telecommunications (DECT) standard for portable phones. It is also used extensively in satellite systems, combat-net radio systems, and passive optical network (PON) networks for upstream traffic from premises to the operator. For usage of Dynamic TDMA packet mode communication, see below.

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunications Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

Integrated Digital Enhanced Network (iDEN) is a mobile telecommunications technology, developed by Motorola, which provides its users the benefits of a trunked radio and a cellular telephone. It was called the first mobile social network by many technology industry analysts. iDEN places more users in a given spectral space, compared to analog cellular and two-way radio systems, by using speech compression and time division multiple access (TDMA).

Wireless local loop (WLL), is the use of a wireless communications link as the "last mile / first mile" connection for delivering plain old telephone service (POTS) or Internet access to telecommunications customers. Various types of WLL systems and technologies exist.

3G, short for third generation, is the third generation of wireless mobile telecommunications technology. It is the upgrade for 2G and 2.5G GPRS networks, for faster internet speed. This is based on a set of standards used for mobile devices and mobile telecommunications use services and networks that comply with the International Mobile Telecommunications-2000 (IMT-2000) specifications by the International Telecommunication Union. 3G finds application in wireless voice telephony, mobile Internet access, fixed wireless Internet access, video calls and mobile TV.

Adaptive Multi-Rate Wideband (AMR-WB) is a patented wideband speech audio coding standard developed based on Adaptive Multi-Rate encoding, using similar methodology as algebraic code excited linear prediction (ACELP). AMR-WB provides improved speech quality due to a wider speech bandwidth of 50–7000 Hz compared to narrowband speech coders which in general are optimized for POTS wireline quality of 300–3400 Hz. AMR-WB was developed by Nokia and VoiceAge and it was first specified by 3GPP.

Mobile VoIP or simply mVoIP is an extension of mobility to a Voice over IP network. Two types of communication are generally supported: cordless/DECT/PCS protocols for short range or campus communications where all base stations are linked into the same LAN, and wider area communications using 3G/4G protocols.

CT2 is a cordless telephony standard that was used in the early 1990s to provide short-range proto-mobile phone service in some countries in Europe. It is considered the precursor to the more successful DECT system. CT2 was also referred to by its marketing name, Telepoint.

The GSM Interworking Profile, usually abbreviated to GIP and sometimes to IWP, is a profile for DECT that allows a DECT base station to form part of a GSM network, given suitable handsets. While proposed and tested, notably in Switzerland in 1995, the system has never been commercially deployed. Infrastructure issues make it less practical and useful to implement than the more recent GAN/UMA system, which can make use of usually unmetered and neutral Internet service to provide the connection back to the network operator.

Headset (audio) combination of headphone and microphone

A headset combines a headphone with a microphone. Headsets are made with either a single-earpiece (mono) or a double-earpiece. Headsets provide the equivalent functionality of a telephone handset but with handsfree operation. They have many uses including in call centers and other telephone-intensive jobs and for anybody wishing to have both hands free during a telephone conversation.

Gigaset AG, formerly known as Siemens Home and Office Communication Devices is a multinational corporation based in Munich, Germany. The company is most active in the area of communications technology. Gigaset manufactures DECT telephones. In 2017, it had 930 employees, revenue of 293 million Euro and sales activities in approximately 70 countries.

The Single Wire Protocol (SWP) is a specification for a single-wire connection between the SIM card and a near field communication (NFC) chip in a cell phone. It is currently under final review by the European Telecommunications Standards Institute (ETSI).

DSP Group

DSP Group, Inc. is a provider of chipsets for VoIP, multimedia, and digital cordless applications. Founded in 1987 with headquarters in San Jose, California, DSP Group employs over 400 people at three US sites and offices in Germany, Scotland, Israel, India, Hong Kong and Japan.

DECT Ultra Low Energy is a wireless communication standard used to design wireless sensor and actuator networks for smart home applications. DECT ULE originated from the DECT and NG-DECT (Cat-iq) technology. DECT ULE devices are used in home automation, home security, and climate control.

References

  1. "DECT Information". 2.rohde-schwarz.com. Retrieved 2 January 2018.
  2. HAN FUN, „Home Area Network FUNctional protocol“
  3. 1 2 "ETSI TR 101 178 V1.5.1 (2005-02). Digital Enhanced Cordless Telecommunications (DECT): A high level guide to the DECT standardization" (PDF). Etsi.org. Retrieved 2 January 2018.
  4. "DECT reaches a New Generation". Etsi.org. Retrieved 2 January 2018.
  5. "DECT Issue 006 – October 2016". Dect.org. Retrieved 2 January 2018.
  6. "ETSI TR 102 570 V1.1.1 (2007-03). Digital Enhanced Cordless Telecommunications (DECT); New Generation DECT; Overview and Requirements" (PDF). Etsi.org. Retrieved 2 January 2018.
  7. ETSI TR 103 422 V1.1.1 (2017-06): Requirements and technical analysis for the further evolution of DECT and DECT ULE
  8. DECT Today (May 2018)
  9. http://opend.dect.org
  10. https://stackforce.github.io/opend-doc/
  11. DECT for Cordless Terminal Mobility. DECT Forum Newsletter. 6 March 1998
  12. "La TELECOM spegne "Fido" – 5 aprile 2000". Angelodenicola.it. Retrieved 2 January 2018.
  13. Schuler, Andreas; Tews, Erik; Weinmann, Ralf-Philipp (29 December 2008). "What is DECT?" (PDF). deDECTed.org. Archived from the original (PDF) on 5 October 2016. Retrieved 15 September 2016.
  14. "WDECT Phone review". Archived from the original on 27 February 2009. Retrieved 3 June 2018.
  15. Example of WI-FI and WDECT problems
  16. Daily Mirror. "TRC Seizes Wireless Phones". Daily Mirror. Retrieved 8 July 2017.
  17. TRCSL. "The Use of DECT 6.0 Phones is illegal in Sri Lanka". TRCSL. TRCSL. Retrieved 8 July 2017.
  18. "DECT Today, Issue 8". Newsletter.insight5.nl. October 2017. p. 16. Retrieved 2 January 2018.
  19. S, Rappaport Theodore (September 2010). Wireless Communications: Principles And Practice, 2/E. Pearson Education. p. 587. ISBN   978-81-317-3186-4.
  20. "Beware of Buying Radiocommunications Equipment not Meeting Prescribed Specifications". Office of the Communications Authority.
  21. 1 2 Dr. DECT Secturity: Present, Past, Future. DECT World 2016 Presentations. Erik Tews, University of Birmingham. 31 May 2016.
  22. 1 2 3 "Serious security vulnerabilities in DECT wireless telephony". Heise Online. 29 December 2008.
  23. Lucks, Stefan; Schuler, Andreas; Tews, Erik; Weinmann, Ralf-Philipp; Wenzel, Matthias. Attacks on the DECT Authentication Mechanisms. Fischlin, Marc (Ed.): Topics in Cryptology – CT-RSA 2009, The Cryptographers' Track at the RSA Conference 2009, San Francisco, CA, USA, April 20–24, 2009.
  24. Erik Tews. DECT Security Analysis (Ph.D. Thesis). Technische Universität Darmstadt
  25. "Do you like ice cream?". Groups.google.com. Newsgroup:  alt.anonymous.messages. Usenet:   adsq2u$p00$1@wanadoo.fr . Retrieved 2 January 2018.
  26. Weinmann, Ralf-Philipp (26 January 2009). "DSC – Reverse Engineering of the Samsung DECT SP-R6150". Archived from the original on 26 February 2012.
  27. Nohl, Karsten; Tews, Erik; Weinmann, Ralf-Philipp (4 April 2010). "Cryptanalysis of the DECT Standard Cipher" (PDF). Fast Software Encryption, 17th International Workshop, FSE 2010, Seoul, Korea.
  28. "Wireless LANs: developments in technology and standards". IEE Journal of Computing and Control Engineering. October 1994.
  29. Independent Advisory Group on Non-ionising Radiation (April 2012). "Health Effects from Radiofrequency Electromagnetic Fields". (UK) Health Protection Agency. Retrieved 10 September 2013.
  30. Vitreous State Laboratory, Catholic University of America, Washington, DC 20064, USA. "Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection". (US) Wiley-Liss, Inc. PMID   11813250.CS1 maint: Multiple names: authors list (link)
  31. "What are the health risks associated with mobile phones and their base stations?". Online Q&A. World Health Organization. 5 December 2005. Retrieved 19 January 2008.

Standards

ETSI EN 300 175 V2.7.1 (2017-11). Digital Enhanced Cordless Telecommunications (DECT) – Common Interface (CI)
ETSI TS 102 939 (2017-10). Digital Enhanced Cordless Telecommunications (DECT) – Ultra Low Energy (ULE) – Machine to Machine Communications
ETSI TS 102 527. Digital Enhanced Cordless Telecommunications (DECT) – New Generation DECT
Digital Enhanced Cordless Telecommunications (DECT)
Digital Enhanced Cordless Telecommunications (DECT) – New Generation DECT

Further reading