Digital signal processor

Last updated
A digital signal processor chip found in a guitar effects unit. Dsp chip.jpg
A digital signal processor chip found in a guitar effects unit.

A digital signal processor (DSP) is a specialized microprocessor (or a SIP block), with its architecture optimized for the operational needs of digital signal processing. [1] [2]

Microprocessor Computer processor contained on an integrated-circuit chip

A microprocessor is a computer processor that incorporates the functions of a central processing unit on a single integrated circuit (IC), or at most a few integrated circuits. The microprocessor is a multipurpose, clock driven, register based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory and provides results as output. Microprocessors contain both combinational logic and sequential digital logic. Microprocessors operate on numbers and symbols represented in the binary number system.

A system in package (SiP) or system-in-a-package is a number of integrated circuits enclosed in a single chip carrier package. The SiP performs all or most of the functions of an electronic system, and is typically used inside a mobile phone, digital music player, etc. Dies containing integrated circuits may be stacked vertically on a substrate. They are internally connected by fine wires that are bonded to the package. Alternatively, with a flip chip technology, solder bumps are used to join stacked chips together. Systems-in-package are like systems-on-chip (SoC) but less tightly integrated and not on a single semiconductor die.

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency.


The goal of DSP is usually to measure, filter or compress continuous real-world analog signals. Most general-purpose microprocessors can also execute digital signal processing algorithms successfully, but may not be able to keep up with such processing continuously in real-time. Also, dedicated DSPs usually have better power efficiency, thus they are more suitable in portable devices such as mobile phones because of power consumption constraints. [3] DSPs often use special memory architectures that are able to fetch multiple data or instructions at the same time.

Mobile phone Portable device to make telephone calls using a radio link

A mobile phone, cell phone, cellphone, or hand phone, sometimes shortened to simply mobile, cell or just phone, is a portable telephone that can make and receive calls over a radio frequency link while the user is moving within a telephone service area. The radio frequency link establishes a connection to the switching systems of a mobile phone operator, which provides access to the public switched telephone network (PSTN). Modern mobile telephone services use a cellular network architecture, and, therefore, mobile telephones are called cellular telephones or cell phones, in North America. In addition to telephony, 2000s-era mobile phones support a variety of other services, such as text messaging, MMS, email, Internet access, short-range wireless communications, business applications, video games, and digital photography. Mobile phones offering only those capabilities are known as feature phones; mobile phones which offer greatly advanced computing capabilities are referred to as smartphones.

Memory architecture describes the methods used to implement electronic computer data storage in a manner that is a combination of the fastest, most reliable, most durable, and least expensive way to store and retrieve information. Depending on the specific application, a compromise of one of these requirements may be necessary in order to improve another requirement. Memory architecture also explains how binary digits are converted into electric signals and then stored in the memory cells. And also the structure of a memory cell.


A typical digital processing system DSP block diagram.svg
A typical digital processing system

Digital signal processing algorithms typically require a large number of mathematical operations to be performed quickly and repeatedly on a series of data samples. Signals (perhaps from audio or video sensors) are constantly converted from analog to digital, manipulated digitally, and then converted back to analog form. Many DSP applications have constraints on latency; that is, for the system to work, the DSP operation must be completed within some fixed time, and deferred (or batch) processing is not viable.

Algorithm An unambiguous specification of how to solve a class of problems

In mathematics and computer science, an algorithm is a set of instructions, typically to solve a class of problems or perform a computation. Algorithms are unambiguous specifications for performing calculation, data processing, automated reasoning, and other tasks.

Latency is a time interval between the stimulation and response, or, from a more general point of view, a time delay between the cause and the effect of some physical change in the system being observed. Latency is physically a consequence of the limited velocity with which any physical interaction can propagate. The magnitude of this velocity is always less than or equal to the speed of light. Therefore, every physical system with any physical separation (distance) between cause and effect will experience some sort of latency, regardless of the nature of stimulation that it has been exposed to.

Most general-purpose microprocessors and operating systems can execute DSP algorithms successfully, but are not suitable for use in portable devices such as mobile phones and PDAs because of power efficiency constraints. [3] A specialized DSP, however, will tend to provide a lower-cost solution, with better performance, lower latency, and no requirements for specialised cooling or large batteries.[ citation needed ]

Such performance improvements have led to the introduction of digital signal processing in commercial communications satellites where hundreds or even thousands of analog filters, switches, frequency converters and so on are required to receive and process the uplinked signals and ready them for downlinking, and can be replaced with specialised DSPs with a significant benefits to the satellites' weight, power consumption, complexity/cost of construction, reliability and flexibility of operation. For example, the SES-12 and SES-14 satellites from operator SES, both intended for launch in 2017, were built by Airbus Defence and Space with 25% of capacity using DSP. [4]

Communications satellite artificial satellite designed for telecommunications

A communications satellite is an artificial satellite that relays and amplifies radio telecommunications signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. There are 2,134 communications satellites in Earth's orbit, used by both private and government organizations. Many are in geostationary orbit 22,236 miles (35,785 km) above the equator, so that the satellite appears stationary at the same point in the sky, so the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track it.

SES S.A. communications satellite owner and operator

SES S.A. is a communications satellite owner and operator providing video and data connectivity worldwide to broadcasters, content and internet service providers, mobile and fixed network operators, governments and institutions, with a mission to "connect, enable, and enrich".

Airbus Defence and Space is a division of Airbus responsible for defence and aerospace products and services. The division was formed in January 2014 during the corporate restructuring of European Aeronautic Defence and Space (EADS), and comprises the former Airbus Military, Astrium, and Cassidian divisions. It is the world's second largest space company after Boeing and one of the top ten defence companies in the world.

The architecture of a digital signal processor is optimized specifically for digital signal processing. Most also support some of the features as an applications processor or microcontroller, since signal processing is rarely the only task of a system. Some useful features for optimizing DSP algorithms are outlined below.


Software architecture

By the standards of general-purpose processors, DSP instruction sets are often highly irregular; while traditional instruction sets are made up of more general instructions that allow them to perform a wider variety of operations, instruction sets optimized for digital signal processing contain instructions for common mathematical operations that occur frequently in DSP calculations. Both traditional and DSP-optimized instruction sets are able to compute any arbitrary operation but an operation that might require multiple ARM or x86 instructions to compute might require only one instruction in a DSP optimized instruction set.

One implication for software architecture is that hand-optimized assembly-code routines are commonly packaged into libraries for re-use, instead of relying on advanced compiler technologies to handle essential algorithms.[ clarification needed ] Even with modern compiler optimizations hand-optimized assembly code is more efficient and many common algorithms involved in DSP calculations are hand-written in order to take full advantage of the architectural optimizations.

Assembly language Low level programming language

An assembly language, often abbreviated asm, is any low-level programming language in which there is a very strong correspondence between the instructions in the language and the architecture's machine code instructions. Assembly language may also be called symbolic machine code.

Instruction sets

Data instructions

  • Saturation arithmetic, in which operations that produce overflows will accumulate at the maximum (or minimum) values that the register can hold rather than wrapping around (maximum+1 doesn't overflow to minimum as in many general-purpose CPUs, instead it stays at maximum). Sometimes various sticky bits operation modes are available.
  • Fixed-point arithmetic is often used to speed up arithmetic processing
  • Single-cycle operations to increase the benefits of pipelining

Program flow

Hardware architecture

In engineering, hardware architecture refers to the identification of a system's physical components and their interrelationships. This description, often called a hardware design model, allows hardware designers to understand how their components fit into a system architecture and provides to software component designers important information needed for software development and integration. Clear definition of a hardware architecture allows the various traditional engineering disciplines (e.g., electrical and mechanical engineering) to work more effectively together to develop and manufacture new machines, devices and components.

Hardware is also an expression used within the computer engineering industry to explicitly distinguish the (electronic computer) hardware from the software that runs on it. But hardware, within the automation and software engineering disciplines, need not simply be a computer of some sort. A modern automobile runs vastly more software than the Apollo spacecraft. Also, modern aircraft cannot function without running tens of millions of computer instructions embedded and distributed throughout the aircraft and resident in both standard computer hardware and in specialized hardware components such as IC wired logic gates, analog and hybrid devices, and other digital components. The need to effectively model how separate physical components combine to form complex systems is important over a wide range of applications, including computers, personal digital assistants (PDAs), cell phones, surgical instrumentation, satellites, and submarines.

Memory architecture

DSPs are usually optimized for streaming data and use special memory architectures that are able to fetch multiple data or instructions at the same time, such as the Harvard architecture or Modified von Neumann architecture, which use separate program and data memories (sometimes even concurrent access on multiple data buses).

DSPs can sometimes rely on supporting code to know about cache hierarchies and the associated delays. This is a tradeoff that allows for better performance[ clarification needed ]. In addition, extensive use of DMA is employed.

Addressing and virtual memory

DSPs frequently use multi-tasking operating systems, but have no support for virtual memory or memory protection. Operating systems that use virtual memory require more time for context switching among processes, which increases latency.


Prior to the advent of stand-alone DSP chips discussed below, most DSP applications were implemented using bit-slice processors. The AMD 2901 bit-slice chip with its family of components was a very popular choice. There were reference designs from AMD, but very often the specifics of a particular design were application specific. These bit slice architectures would sometimes include a peripheral multiplier chip. Examples of these multipliers were a series from TRW including the TDC1008 and TDC1010, some of which included an accumulator, providing the requisite multiply–accumulate (MAC) function.

In 1976, Richard Wiggins proposed the Speak & Spell concept to Paul Breedlove, Larry Brantingham, and Gene Frantz at Texas Instrument's Dallas research facility. Two years later in 1978 they produced the first Speak & Spell, with the technological centerpiece being the TMS5100, [5] the industry's first digital signal processor. It also set other milestones, being the first chip to use Linear predictive coding to perform speech synthesis. [6]

In 1978, Intel released the 2920 as an "analog signal processor". [7] It had an on-chip ADC/DAC with an internal signal processor, but it didn't have a hardware multiplier and was not successful in the market. In 1979, AMI released the S2811. The AMI S2811 "signal processing peripheral", like many later DSPs, has a hardware multiplier that enables it to do multiply–accumulate operation in a single instruction. [8] It was designed as a microprocessor peripheral, and it had to be initialized by the host. The S2811 was likewise not successful in the market.

In 1980 the first stand-alone, complete DSPs – the NEC µPD7720 and AT&T DSP1 – were presented at the International Solid-State Circuits Conference '80. Both processors were inspired by the research in PSTN telecommunications.

The Altamira DX-1 was another early DSP, utilizing quad integer pipelines with delayed branches and branch prediction.[ citation needed ]

Another DSP produced by Texas Instruments (TI), the TMS32010 presented in 1983, proved to be an even bigger success. It was based on the Harvard architecture, and so had separate instruction and data memory. It already had a special instruction set, with instructions like load-and-accumulate or multiply-and-accumulate. It could work on 16-bit numbers and needed 390 ns for a multiply–add operation. TI is now the market leader in general-purpose DSPs.

About five years later, the second generation of DSPs began to spread. They had 3 memories for storing two operands simultaneously and included hardware to accelerate tight loops; they also had an addressing unit capable of loop-addressing. Some of them operated on 24-bit variables and a typical model only required about 21 ns for a MAC. Members of this generation were for example the AT&T DSP16A or the Motorola 56000.

The main improvement in the third generation was the appearance of application-specific units and instructions in the data path, or sometimes as coprocessors. These units allowed direct hardware acceleration of very specific but complex mathematical problems, like the Fourier-transform or matrix operations. Some chips, like the Motorola MC68356, even included more than one processor core to work in parallel. Other DSPs from 1995 are the TI TMS320C541 or the TMS 320C80.

The fourth generation is best characterized by the changes in the instruction set and the instruction encoding/decoding. SIMD extensions were added, and VLIW and the superscalar architecture appeared. As always, the clock-speeds have increased; a 3 ns MAC now became possible.

Modern DSPs

Modern signal processors yield greater performance; this is due in part to both technological and architectural advancements like lower design rules, fast-access two-level cache, (E)DMA circuitry and a wider bus system. Not all DSPs provide the same speed and many kinds of signal processors exist, each one of them being better suited for a specific task, ranging in price from about US$1.50 to US$300.

Texas Instruments produces the C6000 series DSPs, which have clock speeds of 1.2 GHz and implement separate instruction and data caches. They also have an 8 MiB 2nd level cache and 64 EDMA channels. The top models are capable of as many as 8000 MIPS (instructions per second), use VLIW (very long instruction word), perform eight operations per clock-cycle and are compatible with a broad range of external peripherals and various buses (PCI/serial/etc). TMS320C6474 chips each have three such DSPs, and the newest generation C6000 chips support floating point as well as fixed point processing.

Freescale produces a multi-core DSP family, the MSC81xx. The MSC81xx is based on StarCore Architecture processors and the latest MSC8144 DSP combines four programmable SC3400 StarCore DSP cores. Each SC3400 StarCore DSP core has a clock speed of 1 GHz.

XMOS produces a multi-core multi-threaded line of processor well suited to DSP operations, They come in various speeds ranging from 400 to 1600 MIPS. The processors have a multi-threaded architecture that allows up to 8 real-time threads per core, meaning that a 4 core device would support up to 32 real time threads. Threads communicate between each other with buffered channels that are capable of up to 80 Mbit/s. The devices are easily programmable in C and aim at bridging the gap between conventional micro-controllers and FPGAs

CEVA, Inc. produces and licenses three distinct families of DSPs. Perhaps the best known and most widely deployed is the CEVA-TeakLite DSP family, a classic memory-based architecture, with 16-bit or 32-bit word-widths and single or dual MACs. The CEVA-X DSP family offers a combination of VLIW and SIMD architectures, with different members of the family offering dual or quad 16-bit MACs. The CEVA-XC DSP family targets Software-defined Radio (SDR) modem designs and leverages a unique combination of VLIW and Vector architectures with 32 16-bit MACs.

Analog Devices produce the SHARC-based DSP and range in performance from 66 MHz/198 MFLOPS (million floating-point operations per second) to 400 MHz/2400 MFLOPS. Some models support multiple multipliers and ALUs, SIMD instructions and audio processing-specific components and peripherals. The Blackfin family of embedded digital signal processors combine the features of a DSP with those of a general use processor. As a result, these processors can run simple operating systems like μCLinux, velocity and Nucleus RTOS while operating on real-time data.

NXP Semiconductors produce DSPs based on TriMedia VLIW technology, optimized for audio and video processing. In some products the DSP core is hidden as a fixed-function block into a SoC, but NXP also provides a range of flexible single core media processors. The TriMedia media processors support both fixed-point arithmetic as well as floating-point arithmetic, and have specific instructions to deal with complex filters and entropy coding.

CSR produces the Quatro family of SoCs that contain one or more custom Imaging DSPs optimized for processing document image data for scanner and copier applications.

Microchip Technology produces the PIC24 based dsPIC line of DSPs. Introduced in 2004, the dsPIC is designed for applications needing a true DSP as well as a true microcontroller, such as motor control and in power supplies. The dsPIC runs at up to 40MIPS, and has support for 16 bit fixed point MAC, bit reverse and modulo addressing, as well as DMA.

Most DSPs use fixed-point arithmetic, because in real world signal processing the additional range provided by floating point is not needed, and there is a large speed benefit and cost benefit due to reduced hardware complexity. Floating point DSPs may be invaluable in applications where a wide dynamic range is required. Product developers might also use floating point DSPs to reduce the cost and complexity of software development in exchange for more expensive hardware, since it is generally easier to implement algorithms in floating point.

Generally, DSPs are dedicated integrated circuits; however DSP functionality can also be produced by using field-programmable gate array chips (FPGAs).

Embedded general-purpose RISC processors are becoming increasingly DSP like in functionality. For example, the OMAP3 processors include a ARM Cortex-A8 and C6000 DSP.

In Communications a new breed of DSPs offering the fusion of both DSP functions and H/W acceleration function is making its way into the mainstream. Such Modem processors include ASOCS ModemX and CEVA's XC4000.

In May 2018, Huarui-2 designed by Nanjing Research Institute of Electronics Technology passed acceptance. With a processing speed of 0.4 TFLOPS, the chip can achieve better performance than current mainstream DSP chips. [9] The design team has begun to create Huarui-3, which has a processing speed in TFLOPS level and a support for artificial intelligence. [10]

See also

Related Research Articles

MIPS is a reduced instruction set computer (RISC) instruction set architecture (ISA) developed by MIPS Computer Systems, now MIPS Technologies, based in the United States.

Very long instruction word (VLIW) refers to instruction set architectures designed to exploit instruction level parallelism (ILP). Whereas conventional central processing units mostly allow programs to specify instructions to execute in sequence only, a VLIW processor allows programs to explicitly specify instructions to execute in parallel. This design is intended to allow higher performance without the complexity inherent in some other designs.

Motorola 56000

The Motorola DSP56000 is a family of digital signal processor (DSP) chips produced by Motorola Semiconductor starting in 1986 and is still being produced in more advanced models in the 2010s. The 56k series was quite popular for a time in a number of computers, including the NeXT, Atari Falcon030 and SGI Indigo workstations all using the 56001. Upgraded 56k versions are still used today in audio equipment, radars, communications devices and various other embedded DSP applications. The 56000 was also used as the basis for the updated 96000, which was not commercially successful.

System on a chip type of integrated circuit

A system on a chip is an integrated circuit that integrates all components of a computer or other electronic system. These components typically include a central processing unit (CPU), memory, input/output ports and secondary storage – all on a single substrate or microchip, the size of a coin. It may contain digital, analog, mixed-signal, and often radio frequency signal processing functions, depending on the application. As they are integrated on a single substrate, SoCs consume much less power and take up much less area than multi-chip designs with equivalent functionality. Because of this, SoCs are very common in the mobile computing and edge computing markets. Systems on chip are commonly used in embedded systems and the Internet of Things.

The Intel i860 was a RISC microprocessor design introduced by Intel in 1989. It was one of Intel's first attempts at an entirely new, high-end instruction set architecture since the failed Intel iAPX 432 from the 1980s. It was released with considerable fanfare, slightly obscuring the earlier Intel i960, which was successful in some niches of embedded systems, and which many considered to be a better design. The i860 never achieved commercial success and the project was terminated in the mid-1990s.


A coprocessor is a computer processor used to supplement the functions of the primary processor. Operations performed by the coprocessor may be floating point arithmetic, graphics, signal processing, string processing, cryptography or I/O interfacing with peripheral devices. By offloading processor-intensive tasks from the main processor, coprocessors can accelerate system performance. Coprocessors allow a line of computers to be customized, so that customers who do not need the extra performance do not need to pay for it.

In computing, especially digital signal processing, the multiply–accumulate operation is a common step that computes the product of two numbers and adds that product to an accumulator. The hardware unit that performs the operation is known as a multiplier–accumulator ; the operation itself is also often called a MAC or a MAC operation. The MAC operation modifies an accumulator a:

The Super Harvard Architecture Single-Chip Computer (SHARC) is a high performance floating-point and fixed-point DSP from Analog Devices. SHARC is used in a variety of signal processing applications ranging from single-CPU guided artillery shells to 1000-CPU over-the-horizon radar processing computers. The original design dates to about January 1994.


The Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality supplied by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.

Texas Instruments TMS320

Texas Instruments TMS320 is a blanket name for a series of digital signal processors (DSPs) from Texas Instruments. It was introduced on April 8, 1983 through the TMS32010 processor, which was then the fastest DSP on the market.

The NEC µPD7720 is the name of fixed point digital signal processors from NEC. Announced in 1980, it became, along with the Texas Instruments TMS32010, one of the most popular DSPs of its day.

FR-V (microprocessor)

The Fujitsu FR-V is one of the very few processors ever able to process both a very long instruction word (VLIW) and vector processor instructions at the same time, increasing throughput with high parallel computing while increasing performance per watt and hardware efficiency. The family was presented in 1999. Its design was influenced by the VPP500/5000 models of the Fujitsu VP/2000 vector processor supercomputer line.

ARM9 is a group of older 32-bit RISC ARM processor cores licensed by ARM Holdings for microcontroller use. The ARM9 core family consists of ARM9TDMI, ARM940T, ARM9E-S, ARM966E-S, ARM920T, ARM922T, ARM946E-S, ARM9EJ-S, ARM926EJ-S, ARM968E-S, ARM996HS. Since ARM9 cores were released from 1998 to 2006, they are no longer recommended for new IC designs, instead ARM Cortex-A, ARM Cortex-M, ARM Cortex-R cores are preferred.

NeuroMatrix is a digital signal processor (DSP) series developed by NTC Module. The DSP has a VLIW/SIMD architecture. It consists of a 32-bit RISC core and a 64-bit vector co-processor. The vector co-processor supports vector operations with elements of variable bit length and is optimized to support the implementation of artificial neural networks. From this derives the name NeuroMatrix Core (NMC). Newer devices contain multiple DSP cores and additional ARM11 or PowerPC 470 cores.

ARM Cortex-M series of processor core models

The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by Arm Holdings. They are intended for microcontroller use, and have been shipped in tens of billions of devices. The cores consist of the Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23, Cortex-M33, Cortex-M35P. The Cortex-M4 / M7 / M33 / M35P cores have an FPU silicon option, and when included in the silicon these cores are known as "Cortex-Mx with FPU" or "Cortex-MxF", where 'x' is the core number.

Hexagon (QDSP6) is the brand for a family of 32-bit multi-threaded microarchitectures implementing the same instruction set for a digital signal processor (DSP) developed by Qualcomm. According to 2012 estimation, Qualcomm shipped 1.2 billion DSP cores inside its system on a chip (SoCs) in 2011 year, and 1.5 billion cores were planned for 2012, making the QDSP6 the most shipped architecture of DSP.

DSK 6713 is a DSP Starter Kit by Texas Instruments, which was developed in cooperation with the US DSP design company Spectrum Digital. The kit can be used in various signal processing applications, for instance in audio processing, instrumentation and telecommunications.

Block floating point (BFP) is a method used to provide an arithmetic approaching floating point while using a fixed-point processor. The algorithm will assign an entire block of data an exponent, rather than single units themselves being assigned an exponent, thus making them a block, rather than a simple floating point. Block floating-point algorithm operations are done through a block using a common exponent, and can be advantageous to limit the space use in the hardware to perform the same functions as floating-point algorithms.

Power ISA Computer instruction set architecture

The Power ISA is an instruction set architecture (ISA) developed by the OpenPOWER Foundation, led by IBM. It was originally developed by the now defunct industry group. Power ISA is an evolution of the PowerPC ISA, created by the mergers of the core PowerPC ISA and the optional Book E for embedded applications. The merger of these two components in 2006 was led by founders IBM and Freescale Semiconductor. The ISA is divided into several categories and every component is defined as a part of a category; each category resides within a certain Book. Processors implement a set of these categories. Different classes of processors are required to implement certain categories, for example a server class processor includes the categories Base, Server, Floating-Point, 64-Bit, etc. All processors implement the Base category.

The Pixel Visual Core (PVC) is a series of ARM-based system in package (SiP) image processors designed by Google. The PVC is a fully programmable image, vision and AI multi-core domain-specific architecture (DSA) for mobile devices and in future for IoT. It first appeared in the Google Pixel 2 and 2 XL which were introduced on October 19, 2017. It has also appeared in the Google Pixel 3 and 3 XL.


  1. Dyer, S. A.; Harms, B. K. (1993). "Digital Signal Processing". In Yovits, M. C. (ed.). Advances in Computers. 37. Academic Press. pp. 104–107. doi:10.1016/S0065-2458(08)60403-9. ISBN   9780120121373.
  2. Liptak, B. G. (2006). Process Control and Optimization. Instrument Engineers' Handbook. 2 (4th ed.). CRC Press. pp. 11–12. ISBN   9780849310812.
  3. 1 2 Ingrid Verbauwhede; Patrick Schaumont; Christian Piguet; Bart Kienhuis (2005-12-24). "Architectures and Design techniques for energy efficient embedded DSP and multimedia processing" (PDF). Retrieved 2017-06-13.
  4. Beyond Frontiers Broadgate Publications (September 2016) pp22
  5. "Speak & Spell, the First Use of a Digital Signal Processing IC for Speech Generation, 1978". IEEE Milestones. IEEE. Retrieved 2012-03-02.
  6. Bogdanowicz, A. (2009-10-06). "IEEE Milestones Honor Three". The Institute. IEEE. Archived from the original on 2016-03-04. Retrieved 2012-03-02.
  8. Alberto Luis Andres. "Digital Graphic Audio Equalizer". p. 48.
  9. "国产新型雷达芯片华睿2号与组网中心同时亮相-科技新闻-中国科技网首页". 科技日报 . Retrieved 2 July 2018.
  10. 王珏玢. "全国产芯片华睿2号通过"核高基"验收-新华网". Xinhua News Agency . 南京. Retrieved 2 July 2018.