# Drag equation

Last updated

In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid. The equation is:

## Contents

$F_{\rm {d}}\,=\,{\tfrac {1}{2}}\,\rho \,u^{2}\,c_{\rm {d}}\,A$ where

• $F_{\rm {d}}$ is the drag force, which is by definition the force component in the direction of the flow velocity,
• $\rho$ is the mass density of the fluid, 
• $u$ is the flow velocity relative to the object,
• $A$ is the reference area, and
• $c_{\rm {d}}$ is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. If the fluid is a liquid, $c_{\rm {d}}$ depends on the Reynolds number; if the fluid is a gas, $c_{\rm {d}}$ depends on both the Reynolds number and the Mach number.

The equation is attributed to Lord Rayleigh, who originally used L2 in place of A (with L being some linear dimension). 

The reference area A is typically defined as the area of the orthographic projection of the object on a plane perpendicular to the direction of motion. For non-hollow objects with simple shape, such as a sphere, this is exactly the same as the maximal cross sectional area. For other objects (for instance, a rolling tube or the body of a cyclist), A may be significantly larger than the area of any cross section along any plane perpendicular to the direction of motion. Airfoils use the square of the chord length as the reference area; since airfoil chords are usually defined with a length of 1, the reference area is also 1. Aircraft use the wing area (or rotor-blade area) as the reference area, which makes for an easy comparison to lift. Airships and bodies of revolution use the volumetric coefficient of drag, in which the reference area is the square of the cube root of the airship's volume. Sometimes different reference areas are given for the same object in which case a drag coefficient corresponding to each of these different areas must be given.

For sharp-cornered bluff bodies, like square cylinders and plates held transverse to the flow direction, this equation is applicable with the drag coefficient as a constant value when the Reynolds number is greater than 1000.  For smooth bodies, like a cylinder, the drag coefficient may vary significantly until Reynolds numbers up to 107 (ten million). 

## Discussion

The equation is easier understood for the idealized situation where all of the fluid impinges on the reference area and comes to a complete stop, building up stagnation pressure over the whole area. No real object exactly corresponds to this behavior. $c_{\rm {d}}$ is the ratio of drag for any real object to that of the ideal object. In practice a rough un-streamlined body (a bluff body) will have a $c_{\rm {d}}$ around 1, more or less. Smoother objects can have much lower values of $c_{\rm {d}}$ . The equation is precise – it simply provides the definition of $c_{\rm {d}}$ (drag coefficient), which varies with the Reynolds number and is found by experiment.

Of particular importance is the $u^{2}$ dependence on flow velocity, meaning that fluid drag increases with the square of flow velocity. When flow velocity is doubled, for example, not only does the fluid strike with twice the flow velocity, but twice the mass of fluid strikes per second. Therefore, the change of momentum per time, i.e. the force experienced, is multiplied by four. This is in contrast with solid-on-solid dynamic friction, which generally has very little velocity dependence.

## Relation with dynamic pressure

The drag force can also be specified as

$F_{\rm {d}}\propto P_{\rm {D}}A$ where PD is the pressure exerted by the fluid on area A. Here the pressure PD is referred to as dynamic pressure due to the kinetic energy of the fluid experiencing relative flow velocity u. This is defined in similar form as the kinetic energy equation:

$P_{\rm {D}}={\frac {1}{2}}\rho u^{2}$ ## Derivation

The drag equation may be derived to within a multiplicative constant by the method of dimensional analysis. If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the:

• speed u,
• fluid density ρ,
• kinematic viscosity ν of the fluid,
• size of the body, expressed in terms of its wetted area A, and
• drag force Fd.

Using the algorithm of the Buckingham π theorem, these five variables can be reduced to two dimensionless groups:

That this is so becomes apparent when the drag force Fd is expressed as part of a function of the other variables in the problem:

$f_{a}(F_{\rm {d}},u,A,\rho ,\nu )=0.$ This rather odd form of expression is used because it does not assume a one-to-one relationship. Here, fa is some (as-yet-unknown) function that takes five arguments. Now the right-hand side is zero in any system of units; so it should be possible to express the relationship described by fa in terms of only dimensionless groups.

There are many ways of combining the five arguments of fa to form dimensionless groups, but the Buckingham π theorem states that there will be two such groups. The most appropriate are the Reynolds number, given by

$\mathrm {Re} ={\frac {u{\sqrt {A}}}{\nu }}$ and the drag coefficient, given by

$c_{\rm {d}}={\frac {F_{\rm {d}}}{{\frac {1}{2}}\rho Au^{2}}}.$ Thus the function of five variables may be replaced by another function of only two variables:

$f_{b}\left({\frac {F_{\rm {d}}}{{\frac {1}{2}}\rho Au^{2}}},{\frac {u{\sqrt {A}}}{\nu }}\right)=0.$ where fb is some function of two arguments. The original law is then reduced to a law involving only these two numbers.

Because the only unknown in the above equation is the drag force Fd, it is possible to express it as

{\begin{aligned}{\frac {F_{\rm {d}}}{{\frac {1}{2}}\rho Au^{2}}}&=f_{c}\left({\frac {u{\sqrt {A}}}{\nu }}\right)\\F_{\rm {d}}&={\tfrac {1}{2}}\rho Au^{2}f_{c}(\mathrm {Re} )\\c_{\rm {d}}&=f_{c}(\mathrm {Re} )\end{aligned}} Thus the force is simply ½ ρAu2 times some (as-yet-unknown) function fc of the Reynolds number Re – a considerably simpler system than the original five-argument function given above.

Dimensional analysis thus makes a very complex problem (trying to determine the behavior of a function of five variables) a much simpler one: the determination of the drag as a function of only one variable, the Reynolds number.

If the fluid is a gas, certain properties of the gas influence the drag and those properties must also be taken into account. Those properties are conventionally considered to be the absolute temperature of the gas, and the ratio of its specific heats. These two properties determine the speed of sound in the gas at its given temperature. The Buckingham pi theorem then leads to a third dimensionless group, the ratio of the relative velocity to the speed of sound, which is known as the Mach number. Consequently when a body is moving relative to a gas, the drag coefficient varies with the Mach number and the Reynolds number.

The analysis also gives other information for free, so to speak. The analysis shows that, other things being equal, the drag force will be proportional to the density of the fluid. This kind of information often proves to be extremely valuable, especially in the early stages of a research project.

## Experimental methods

To empirically determine the Reynolds number dependence, instead of experimenting on a large body with fast-flowing fluids (such as real-size airplanes in wind tunnels), one may just as well experiment using a small model in a flow of higher velocity because these two systems deliver similitude by having the same Reynolds number. If the same Reynolds number and Mach number cannot be achieved just by using a flow of higher velocity it may be advantageous to use a fluid of greater density or lower viscosity.

## Related Research Articles In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation. In physics, the Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number. In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.

In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation. In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer. Terminal velocity is the maximum velocity (speed) attainable by an object as it falls through a fluid. It occurs when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration.

In fluid dynamics, the Boussinesq approximation is used in the field of buoyancy-driven flow. It ignores density differences except where they appear in terms multiplied by g, the acceleration due to gravity. The essence of the Boussinesq approximation is that the difference in inertia is negligible but gravity is sufficiently strong to make the specific weight appreciably different between the two fluids. Sound waves are impossible/neglected when the Boussinesq approximation is used since sound waves move via density variations.

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. The Froude number is based on the speed–length ratio which he defined as:

There are two different Bejan numbers (Be) used in the scientific domains of thermodynamics and fluid mechanics. Bejan numbers are named after Adrian Bejan.

In fluid dynamics, drag is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers or between a fluid and a solid surface.

In fluid mechanics, added mass or virtual mass is the inertia added to a system because an accelerating or decelerating body must move some volume of surrounding fluid as it moves through it. Added mass is a common issue because the object and surrounding fluid cannot occupy the same physical space simultaneously. For simplicity this can be modeled as some volume of fluid moving with the object, though in reality "all" the fluid will be accelerated, to various degrees. The Stokes number (Stk), named after George Gabriel Stokes, is a dimensionless number characterising the behavior of particles suspended in a fluid flow. The Stokes number is defined as the ratio of the characteristic time of a particle to a characteristic time of the flow or of an obstacle, or Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and/or the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks, mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting. Sediment transport due to fluid motion occurs in rivers, oceans, lakes, seas, and other bodies of water due to currents and tides. Transport is also caused by glaciers as they flow, and on terrestrial surfaces under the influence of wind. Sediment transport due only to gravity can occur on sloping surfaces in general, including hillslopes, scarps, cliffs, and the continental shelf—continental slope boundary.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

In fluid dynamics the Morison equation is a semi-empirical equation for the inline force on a body in oscillatory flow. It is sometimes called the MOJS equation after all four authors—Morison, O'Brien, Johnson and Schaaf—of the 1950 paper in which the equation was introduced. The Morison equation is used to estimate the wave loads in the design of oil platforms and other offshore structures. In fluid mechanics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.

In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels with the same boundary conditions and the same Reynolds and Womersley numbers, then the fluid flows will be identical. This can be seen from inspection of the underlying Navier-Stokes equation, with geometrically similar bodies, equal Reynolds and Womersley Numbers the functions of velocity (u’,v’,w’) and pressure (P’) for any variation of flow.

In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain terms in the equations for the studied flow. This may provide possibilities to neglect terms in the considered flow. Further, non-dimensionalized Navier–Stokes equations can be beneficial if one is posed with similar physical situations – that is problems where the only changes are those of the basic dimensions of the system.

Skin friction drag is a type of aerodynamic or hydrodynamic drag, which is resistant force exerted on an object moving in a fluid. Skin friction drag is caused by the viscosity of fluids and is developed from laminar drag to turbulent drag as a fluid moves on the surface of an object. Skin friction drag is generally expressed in terms of the Reynolds number, which is the ratio between inertial force and viscous force.

1. Note that for the Earth's atmosphere, the air density can be found using the barometric formula. Air is 1.293 kg/m3 at 0°C and 1 atmosphere
2. See Section 7 of Book 2 of Newton's Principia Mathematica; in particular Proposition 37.
3. Drag Force Archived April 14, 2008, at the Wayback Machine
4. See Batchelor (1967), p. 341.