Dysprosium(III) chloride

Last updated
Dysprosium(III) chloride
Dysprosium(III) chloride.jpg
Names
IUPAC names
Dysprosium(III) chloride
Dysprosium trichloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.024 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/3ClH.Dy/h3*1H;/q;;;+3/p-3 Yes check.svgY
    Key: BOXVSFHSLKQLNZ-UHFFFAOYSA-K Yes check.svgY
  • InChI=1/3ClH.Dy/h3*1H;/q;;;+3/p-3
    Key: BOXVSFHSLKQLNZ-DFZHHIFOAK
  • Cl[Dy](Cl)Cl
Properties
DyCl3
Molar mass 268.86 g/mol (anhydrous)
Appearancewhite solid
Density 3.67 g/cm3, solid
Melting point 647 °C (1,197 °F; 920 K) (anhydrous)
Boiling point 1,530 °C (2,790 °F; 1,800 K)
Soluble
Structure
AlCl3 structure
Octahedral
Hazards
GHS labelling: [1]
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P302+P352, P305+P351+P338
Flash point Non-flammable
Related compounds
Other anions
Dysprosium(III) fluoride
Dysprosium(III) bromide
Dysprosium(III) iodide
Dysprosium(III) oxide
Other cations
Terbium(III) chloride
Dysprosium(II) chloride
Holmium(III) chloride
Related compounds
Dysprosium(II) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dysprosium(III) chloride (DyCl3), also known as dysprosium trichloride, is a compound of dysprosium and chlorine. It is a white to yellow solid which rapidly absorbs water on exposure to moist air to form a hexahydrate, DyCl3·6H2O. Simple rapid heating of the hydrate causes partial hydrolysis [2] to an oxychloride, DyOCl.

Contents

Preparation and reactions

DyCl3 is often prepared by the "ammonium chloride route", starting from either Dy2O3 or the hydrated chloride DyCl3·6H2O. [3] [4] [5] These methods produce (NH4)2[DyCl5]:

10 NH4Cl + Dy2O3 → 2 (NH4)2[DyCl5] + 6 NH3 + 3 H2O
DyCl3·6H2O + 2 NH4Cl → (NH4)2[DyCl5] + 6 H2O

The pentachloride decomposes thermally according to the following equation:

(NH4)2[DyCl5] → 2 NH4Cl + DyCl3

The thermolysis reaction proceeds via the intermediacy of (NH4)[Dy2Cl7].

Treating Dy2O3 with aqueous HCl produces the hydrated chloride DyCl3·6H2O, which cannot be rendered anhydrous by heating. Instead one obtains an oxychloride: [4]

DyCl3 + H2O → DyOCl + 2 HCl

Dysprosium(III) chloride is a moderately strong Lewis acid, which ranks as "hard" according to the HSAB concept. Aqueous solutions of dysprosium chloride can be used to prepare other dysprosium(III) compounds, for example dysprosium(III) fluoride:

DyCl3 + 3 NaF → DyF3 + 3 NaCl

Uses

Dysprosium(III) chloride can be used as a starting point for the preparation of other dysprosium salts. Dysprosium metal is produced when a molten mixture of DyCl3 in eutectic LiCl-KCl is electrolysed. The reduction occurs via Dy2+, at a tungsten cathode. [6]

Precautions

Dysprosium compounds are believed to be of low to moderate toxicity, although their toxicity has not been investigated in detail.

Related Research Articles

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2 and its hydrates. Zinc chlorides, of which nine crystalline forms are known, are colorless or white, and are highly soluble in water. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

<span class="mw-page-title-main">Cerium(III) chloride</span> Chemical compound

Cerium(III) chloride (CeCl3), also known as cerous chloride or cerium trichloride, is a compound of cerium and chlorine. It is a white hygroscopic salt; it rapidly absorbs water on exposure to moist air to form a hydrate, which appears to be of variable composition, though the heptahydrate CeCl3·7H2O is known. It is highly soluble in water, and (when anhydrous) it is soluble in ethanol and acetone.

<span class="mw-page-title-main">Praseodymium(III) chloride</span> Chemical compound

Praseodymium(III) chloride is the inorganic compound with the formula PrCl3. Like other lanthanide trichlorides, it exists both in the anhydrous and hydrated forms. It is a blue-green solid that rapidly absorbs water on exposure to moist air to form a light green heptahydrate.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Samarium(III) chloride</span> Chemical compound

Samarium(III) chloride, also known as samarium trichloride, is an inorganic compound of samarium and chloride. It is a pale yellow salt that rapidly absorbs water to form a hexahydrate, SmCl3.6H2O. The compound has few practical applications but is used in laboratories for research on new compounds of samarium.

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

<span class="mw-page-title-main">Tantalum(V) chloride</span> Chemical compound

Tantalum(V) chloride, also known as tantalum pentachloride, is an inorganic compound with the formula TaCl5. It takes the form of a white powder and is commonly used as a starting material in tantalum chemistry. It readily hydrolyzes to form tantalum(V) oxychloride (TaOCl3) and eventually tantalum pentoxide (Ta2O5); this requires that it be synthesised and manipulated under anhydrous conditions, using air-free techniques.

<span class="mw-page-title-main">Scandium oxide</span> Chemical compound

Scandium(III) oxide or scandia is a inorganic compound with formula Sc2O3. It is one of several oxides of rare earth elements with a high melting point. It is used in the preparation of other scandium compounds as well as in high-temperature systems (for its resistance to heat and thermal shock), electronic ceramics, and glass composition (as a helper material).

<span class="mw-page-title-main">Terbium(III,IV) oxide</span> Chemical compound

Terbium(III,IV) oxide, occasionally called tetraterbium heptaoxide, has the formula Tb4O7, though some texts refer to it as TbO1.75. There is some debate as to whether it is a discrete compound, or simply one phase in an interstitial oxide system. Tb4O7 is one of the main commercial terbium compounds, and the only such product containing at least some Tb(IV) (terbium in the +4 oxidation state), along with the more stable Tb(III). It is produced by heating the metal oxalate, and it is used in the preparation of other terbium compounds. Terbium forms three other major oxides: Tb2O3, TbO2, and Tb6O11.

<span class="mw-page-title-main">Erbium(III) chloride</span> Chemical compound

Erbium(III) chloride is a violet solid with the formula ErCl3. It is used in the preparation of erbium metal.

<span class="mw-page-title-main">Gadolinium(III) chloride</span> Chemical compound

Gadolinium(III) chloride, also known as gadolinium trichloride, is GdCl3. It is a colorless, hygroscopic, water-soluble solid. The hexahydrate GdCl3∙6H2O is commonly encountered and is sometimes also called gadolinium trichloride. Gd3+ species are of special interest because the ion has the maximum number of unpaired spins possible, at least for known elements. With seven valence electrons and seven available f-orbitals, all seven electrons are unpaired and symmetrically arranged around the metal. Because of the similarity in their coordination chemistry, gallium(III) compounds have been used as diamagnetic analogs of ferric compounds.

<span class="mw-page-title-main">Yttrium(III) chloride</span> Chemical compound

Yttrium(III) chloride is an inorganic compound of yttrium and chloride. It exists in two forms, the hydrate (YCl3(H2O)6) and an anhydrous form (YCl3). Both are colourless solids that are highly soluble in water and deliquescent.

<span class="mw-page-title-main">Ytterbium(III) chloride</span> Chemical compound

Ytterbium(III) chloride (YbCl3) is an inorganic chemical compound. It reacts with NiCl2 to form a very effective catalyst for the reductive dehalogenation of aryl halides. It is poisonous if injected, and mildly toxic by ingestion. It is an experimental teratogen, known to irritate the skin and eyes. When heated to decomposition it emits toxic fumes of Cl.

Lanthanum chloride is the inorganic compound with the formula LaCl3. It is a common salt of lanthanum which is mainly used in research. It is a white solid that is highly soluble in water and alcohols.

<span class="mw-page-title-main">Bismuth chloride</span> Chemical compound

Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory.

Gadolinium(III) fluoride is an inorganic compound with a chemical formula GdF3.

<span class="mw-page-title-main">Dysprosium(III) nitrate</span> Chemical compound

Dysprosium(III) nitrate is an inorganic compound, a salt of dysprosium and nitric acid with the chemical formula Dy(NO3)3. The compound forms yellowish crystals, dissolves in water, forms a crystalline hydrate.

Lutetium(III) nitrate is an inorganic compound, a salt of lutetium and nitric acid with the chemical formula Lu(NO3)3. The compound forms colorless crystals, dissolves in water, and also forms crystalline hydrates. The compound is poisonous.

Lanthanide trichlorides are a family of inorganic compound with the formula LnCl3, where Ln stands for a lanthanide metal. The trichlorides are standard reagents in applied and academic chemistry of the lanthanides. They exist as anhydrous solids and as hydrates.

References

  1. GHS: Sigma-Aldrich 325546
  2. F. T. Edelmann, P. Poremba, in: Synthetic Methods of Organometallic and Inorganic Chemistry, (W. A. Herrmann, ed.), Vol. 6, Georg Thieme Verlag, Stuttgart, 1997.
  3. Meyer, G. (1989). The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides-The Example of YCl3. Inorganic Syntheses. Vol. 25. pp. 146–150. doi:10.1002/9780470132562.ch35. ISBN   978-0-470-13256-2.
  4. 1 2 Taylor, M.D.; Carter, C.P. (1962). "Preparation of anhydrous lanthanide halides, especially iodides". Journal of Inorganic and Nuclear Chemistry. 24 (4): 387–391. doi:10.1016/0022-1902(62)80034-7.
  5. Edelmann, F. T.; Poremba, P. (1997). Herrmann, W. A. (ed.). Synthetic Methods of Organometallic and Inorganic Chemistry. Vol. VI. Stuttgart: Georg Thieme Verlag. ISBN   3-13-103021-6.
  6. Y. Castrillejo, M. R. Bermejo, A. I. Barrado, R. Pardo, E. Barrado, A. M. Martinez, Electrochimica Acta, 50, 2047-2057 (2005).