Electromagnetic radiation and health

Last updated

At sufficiently high flux levels, various bands of electromagnetic radiation have been found to cause deleterious health effects in people. Electromagnetic radiation can be classified into two types: ionizing radiation and non-ionizing radiation, based on the capability of a single photon with more than 10  eV energy to ionize atoms or break chemical bonds. [1] Extreme ultraviolet and higher frequencies, such as X-rays or gamma rays are ionizing, and these pose their own special hazards: see radiation and radiation poisoning . The last quarter of the twentieth century saw a dramatic increase in the number of devices emitting non-ionizing radiation in all segments of society, which resulted in an elevation of health concerns by researchers and clinicians, and an associated interest in government regulation for safety purposes. By far the most common health hazard of radiation is sunburn, which causes between approximately 100,000 and 1 million new skin cancers annually in the United States. [2] [3]

Contents

Hazards

Extrinsic

Sufficiently strong electromagnetic radiation (EMR) can cause electric currents in conductive materials that is strong enough to create sparks (electrical arcs) when an induced voltage exceeds the breakdown voltage of the surrounding medium (e.g. air at 3.0 MV/m). [4] These can deliver an electric shock to persons or animals. For example, the radio emissions from transmission lines have occasionally caused shocks to construction workers from nearby equipment, causing OSHA to establish standards for proper handling. [5]

EMR-induced sparks can ignite nearby flammable materials or gases, which can be especially hazardous in the vicinity of explosives or pyrotechnics. This risk is commonly referred to as Hazards of Electromagnetic Radiation to Ordnance (HERO) by the United States Navy (USN). United States Military Standard 464A (MIL-STD-464A) mandates assessment of HERO in a system, but USN document OD 30393 provides design principles and practices for controlling electromagnetic hazards to ordnance. [6] The risk related to fueling is known as Hazards of Electromagnetic Radiation to Fuel (HERF). NAVSEA OP 3565 Vol. 1 could be used to evaluate HERF, which states a maximum power density of 0.09 W/m² for frequencies under 225 MHz (i.e. 4.2 meters for a 40 W emitter). [6]

Intrinsic

Dielectric heating from electromagnetic fields can create a biological hazard. For example, touching or standing around an antenna while a high-power transmitter is in operation can cause severe burns. These are exactly the kind of burns that would be caused inside a microwave oven. [7] The dielectric heating effect varies with the power and the frequency of the electromagnetic energy, as well as the distance to the source. The eyes and testes are particularly susceptible to radio frequency heating due to the paucity of blood flow in these areas that could otherwise dissipate the heat buildup. [8]

Radio frequency (RF) energy at power density levels of 1-10 mW/cm2 or higher can cause measurable heating of tissues. Typical RF energy levels encountered by the general public are well below the level needed to cause significant heating, but certain workplace environments near high power RF sources may exceed safe exposure limits. [8] A measure of the heating effect is the specific absorption rate or SAR, which has units of watts per kilogram (W/kg). The IEEE [9] and many national governments have established safety limits for exposure to various frequencies of electromagnetic energy based on SAR, mainly based on ICNIRP Guidelines, [10] which guard against thermal damage.

Low-level exposure

The World Health Organization began a research effort in 1996 to study the health effects from the ever-increasing exposure of people to a diverse range of EMR sources. After 30 years of extensive study, science has yet to confirm a health risk from exposure to low-level fields. However, there remain gaps in the understanding of the biological effects, and more research needs to be performed. Studies are being run to examine cells and determine if EM exposure can cause detrimental effects. Animal studies are being used to look for effects impacting more complex physiologies that are similar to humans. Epidemiological studies look for statistical correlations between EM exposure in the field and specific health effects. As of 2019, much of the current work is focused on the study of EM fields in relation to cancer. [11]

There are publications which support the existence of complex biological and neurological effects of weaker non-thermal electromagnetic fields (see Bioelectromagnetics), including weak ELF electromagnetic fields [12] [13] and modulated RF and microwave fields. [14] [15] Fundamental mechanisms of the interaction between biological material and electromagnetic fields at non-thermal levels are not fully understood. [16]

Effects by frequency

Warning sign next to a transmitter with high field strengths For Your Own Health (13942406865) (2).jpg
Warning sign next to a transmitter with high field strengths

While the most acute exposures to harmful levels of electromagnetic radiation are immediately realized as burns, the health effects due to chronic or occupational exposure may not manifest effects for months or years. [17] [18] [3] [19]

Extremely-low frequency

Electric and magnetic fields occur where electricity is generated or distributed in power lines, cables, or electrical appliances. Human responses depend on the field strength, ambient environmental conditions, and individual sensitivity. 7% of volunteers exposed to power-frequency electric fields of high-power, extremely-low-frequency RF with electric field levels in the low kV/m range reported painful currents that flowed to ground through a body contact surface such as the feet, or arced to ground where the body was well insulated. [20]

A 2002 International Agency for Research on Cancer (IARC) study measured the effect of ELF magnetic fields, and found “limited evidence” of human carcinogenicity in relation to childhood leukemia, leading the IARC to classify ELF magnetic fields as “possibly carcinogenic to humans”. The same study found “inadequate evidence” in relation to all other cancers. When IARC measured the effect of ELF electric fields, it found “inadequate evidence” for human carcinogenicity. [21]

Shortwave

Shortwave (1.6 to 30 MHz) diathermy can be used as a therapeutic technique for its analgesic effect and deep muscle relaxation, but has largely been replaced by ultrasound. Temperatures in muscles can increase by 4–6 °C, and subcutaneous fat by 15 °C. The FCC has restricted the frequencies allowed for medical treatment, and most machines in the US use 27.12 MHz. [22] Shortwave diathermy can be applied in either continuous or pulsed mode. The latter came to prominence because the continuous mode produced too much heating too rapidly, making patients uncomfortable. The technique only heats tissues that are good electrical conductors, such as blood vessels and muscle. Adipose tissue (fat) receives little heating by induction fields because an electrical current is not actually going through the tissues. [23]

Studies have been performed on the use of shortwave radiation for cancer therapy and promoting wound healing, with some success. However, at a sufficiently high energy level, shortwave energy can be harmful to human health, potentially causing damage to biological tissues. [24] The FCC limits for maximum permissible workplace exposure to shortwave radio frequency energy in the range of 3–30 MHz has a plane-wave equivalent power density of (900/f2) mW/cm2 where f is the frequency in MHz, and 100 mW/cm2 from 0.3–3.0 MHz. For uncontrolled exposure to the general public, the limit is 180/f2 between 1.34–30 MHz. [8]

Radio frequency field

The designation of mobile phone signals as "possibly carcinogenic to humans" by the World Health Organization (WHO) (e.g. its IARC, see below) has often been misinterpreted as indicating that some measure of risk has been observed  however the designation indicates only that the possibility could not be conclusively ruled out using the available data. [25]

In 2011, International Agency for Research on Cancer (IARC) classified mobile phone radiation as Group 2B "possibly carcinogenic" (rather than Group 2A "probably carcinogenic" nor the "is carcinogenic" Group 1). That means that there "could be some risk" of carcinogenicity, so additional research into the long-term, heavy use of mobile phones needs to be conducted. [26] The WHO concluded in 2014 that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use." [27] [28]

Since 1962, the microwave auditory effect or tinnitus has been shown from radio frequency exposure at levels below significant heating. [29] Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time. [30] [31] :427–30

In 2019 reporters from the Chicago Tribune tested the level of radiation from smartphones and found it to exceed safe levels.[ citation needed ] The federal communications commission begun to check the findings. [32]

Radio frequency radiation is found to have more thermal related effects. A person's body temperature can be raised which could result in death if exposed to high dosage of RF radiation. [33] Focused RF radiation can also cause burns on the skin or cataracts to form in the eyes. Overall, some health effects are observed at a high levels of RF radiation, but the effects aren't clear at low levels of exposure.

Millimeter waves

In 2009, the US TSA introduced full-body scanners as a primary screening modality in airport security, first as backscatter x-ray scanners, which the European Union banned in 2011 due to health and safety concerns, followed by Millimeter wave scanners . [34] Likewise WiGig for personal area networks have opened the 60 GHz and above microwave band to SAR exposure regulations. Previously, microwave applications in these bands were for point-to-point satellite communication with minimal human exposure. [35] [ relevant? ]

Infrared

Infrared wavelengths longer than 750 nm can produce changes in the lens of the eye. Glassblower's cataract is an example of a heat injury that damages the anterior lens capsule among unprotected glass and iron workers. Cataract-like changes can occur in workers who observe glowing masses of glass or iron without protective eyewear for prolonged periods over many years. [17]

Another important factor is the distance between the worker and the source of radiation. In the case of arc welding, infrared radiation decreases rapidly as a function of distance, so that farther than three feet away from where welding takes place, it does not pose an ocular hazard anymore but, ultraviolet radiation still does. This is why welders wear tinted glasses and surrounding workers only have to wear clear ones that filter UV.[ citation needed ]

Visible light

Photic retinopathy is damage to the macular area of the eye's retina that results from prolonged exposure to sunlight, particularly with dilated pupils. This can happen, for example, while observing a solar eclipse without suitable eye protection. The Sun's radiation creates a photochemical reaction that can result in visual dazzling and a scotoma. The initial lesions and edema will disappear after several weeks, but may leave behind a permanent reduction in visual acuity. [36]

Moderate and high-power lasers are potentially hazardous because they can burn the retina of the eye, or even the skin. To control the risk of injury, various specifications for example ANSI Z136 in the US, EN 60825-1/A2 in Europe, and IEC 60825 internationally define "classes" of lasers depending on their power and wavelength. [37] [38] Regulations prescribe required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles during operation (see laser safety).

As with its infrared and ultraviolet radiation dangers, welding creates an intense brightness in the visible light spectrum, which may cause temporary flash blindness. Some sources state that there is no minimum safe distance for exposure to these radiation emissions without adequate eye protection. [39]

Ultraviolet

Sunlight includes sufficient ultraviolet power to cause sunburn within hours of exposure, and the burn severity increases with the duration of exposure. This effect is a response of the skin called erythema, which is caused by a sufficient strong dose of UV-B. The Sun's UV output is divided into UV-A and UV-B: solar UV-A flux is 100 times that of UV-B, but the erythema response is 1,000 times higher for UV-B.[ citation needed ] This exposure can increase at higher altitudes and when reflected by snow, ice, or sand. The UV-B flux is 2–4 times greater during the middle 4–6 hours of the day, and is not significantly absorbed by cloud cover or up to a meter of water. [40]

Ultraviolet light, specifically UV-B, has been shown to cause cataracts and there is some evidence that sunglasses worn at an early age can slow its development in later life. [18] Most UV light from the sun is filtered out by the atmosphere and consequently airline pilots often have high rates of cataracts because of the increased levels of UV radiation in the upper atmosphere. [41] It is hypothesized that depletion of the ozone layer and a consequent increase in levels of UV light on the ground may increase future rates of cataracts. [42] Note that the lens filters UV light, so if it is removed via surgery, one may be able to see UV light. [43] [44]

Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies. [3] Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world. [3] UV rays can also cause wrinkles, liver spots, moles, and freckles. In addition to sunlight, other sources include tanning beds, and bright desk lights. Damage is cumulative over one's lifetime, so that permanent effects may not be evident for some time after exposure. [19]

Ultraviolet radiation of wavelengths shorter than 300 nm (actinic rays) can damage the corneal epithelium. This is most commonly the result of exposure to the sun at high altitude, and in areas where shorter wavelengths are readily reflected from bright surfaces, such as snow, water, and sand. UV generated by a welding arc can similarly cause damage to the cornea, known as "arc eye" or welding flash burn, a form of photokeratitis. [45]

Fluorescent light bulbs and tubes internally produce ultraviolet light. Normally this is converted to visible light by the phosphor film inside a protective coating. When the film is cracked by mishandling or faulty manufacturing then UV may escape at levels that could cause sunburn or even skin cancer. [46] [47]

Regulation

In the United States, nonionizing radiation is regulated in the Radiation Control for Health and Safety Act of 1968 and the Occupational Safety and Health Act of 1970. [48]

See also

Related Research Articles

A carcinogen is any substance, radionuclide, or radiation that promotes carcinogenesis, the formation of cancer. This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive substances are considered carcinogens, but their carcinogenic activity is attributed to the radiation, for example gamma rays and alpha particles, which they emit. Common examples of non-radioactive carcinogens are inhaled asbestos, certain dioxins, and tobacco smoke. Although the public generally associates carcinogenicity with synthetic chemicals, it is equally likely to arise in both natural and synthetic substances. Carcinogens are not necessarily immediately toxic; thus, their effect can be insidious.

Electromagnetic radiation Form of energy emitted and absorbed by particles which are charged which shows wave-like behavior as it travels through space

In physics, electromagnetic radiation refers to the waves of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.

Radiation Waves or particles propagating through space or through a medium, carrying energy

In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:

Ultraviolet Electromagnetic radiation with a wavelength shorter than that of visible light, but longer than X-rays

Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm to 400 nm, shorter than that of visible light but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce. Consequently, the chemical and biological effects of UV are greater than simple heating effects, and many practical applications of UV radiation derive from its interactions with organic molecules.

Microwave oven Kitchen cooking appliance

A microwave oven is an electric oven that heats and cooks food by exposing it to electromagnetic radiation in the microwave frequency range. This induces polar molecules in the food to rotate and produce thermal energy in a process known as dielectric heating. Microwave ovens heat foods quickly and efficiently because excitation is fairly uniform in the outer 25–38 mm(1–1.5 inches) of a homogeneous, high water content food item.

Radio wave Type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies as high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). At 300 GHz, the corresponding wavelength is 1 mm, and at 30 Hz is 10,000 km. The wavelength of a radio wave can be anywhere from shorter than a grain of rice to longer than the diameter of the Earth. Like all other electromagnetic waves, radio waves travel at the speed of light in vacuum. They are generated by electric charges undergoing acceleration, such as time varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects.

Ionizing radiation Radiation that carries enough light energy to liberate electrons from atoms or molecules

Ionizing radiation is radiation, traveling as a particle or electromagnetic wave, that carries sufficient energy to detach electrons from atoms or molecules, thereby ionizing an atom or a molecule. Ionizing radiation is made up of energetic subatomic particles, ions or atoms moving at high speeds, and electromagnetic waves on the high-energy end of the electromagnetic spectrum.

Specific Absorption Rate (SAR) is a measure of the rate at which energy is absorbed per unit mass by a human body when exposed to a radio frequency (RF) electromagnetic field. It can also refer to absorption of other forms of energy by tissue, including ultrasound. It is defined as the power absorbed per mass of tissue and has units of watts per kilogram (W/kg).

Wireless device radiation and health

The antennas contained in mobile phones, including smartphones, emit radiofrequency (RF) radiation ; the parts of the head or body nearest to the antenna can absorb this energy and convert it to heat. Since at least the 1990s, scientists have researched whether the now-ubiquitous radiation associated with mobile phone antennas or cell phone towers is affecting human health. Mobile phone networks use various bands of RF frequency, some of which overlap with the microwave range. Other digital wireless systems, such as data communication networks, produce similar radiation.

Bioelectromagnetics, also known as bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities. Areas of study include electrical or electromagnetic fields produced by living cells, tissues or organisms, including bioluminescent bacteria; for example, the cell membrane potential and the electric currents that flow in nerves and muscles, as a result of action potentials. Others include animal navigation utilizing the geomagnetic field; the effects of man-made sources of electromagnetic fields like mobile phones; and developing new therapies to treat various conditions. The term can also refer to the ability of living cells, tissues, and organisms to produce electrical fields and the response of cells to electromagnetic fields.

A high-intensity radiated field (HIRF) is radio-frequency energy of a strength sufficient to adversely affect either a living organism or the performance of a device subjected to it. A microwave oven is an example of this principle put to controlled, safe use. Radio-frequency (RF) energy is non-ionizing electromagnetic radiation – its effects on tissue are through heating. Electronic components are affected via rectification of the RF and a corresponding shift in the bias points of the components in the field.

A co-carcinogen is a chemical that promotes the effects of a carcinogen in the production of cancer. Usually, the term is used to refer to chemicals that are not carcinogenic on their own, such that an equivalent amount of the chemical is insufficient to initiate carcinogenesis. A chemical can be co-carcinogenic with other chemicals or with nonchemical carcinogens, such as UV radiation.

Health effects of sunlight exposure

The ultraviolet radiation in sunlight has both positive and negative health effects, as it is both a principal source of vitamin D3 and a mutagen. A dietary supplement can supply vitamin D without this mutagenic effect. Vitamin D has been suggested as having a wide range of positive health effects, which include strengthening bones and possibly inhibiting the growth of some cancers. UV exposure also has positive effects for endorphin levels, and possibly for protection against multiple sclerosis. Visible sunlight to the eyes gives health benefits through its association with the timing of melatonin synthesis, maintenance of normal and robust circadian rhythms, and reduced risk of seasonal affective disorder.

Microwave burns are burn injuries caused by thermal effects of microwave radiation absorbed in a living organism. In comparison with radiation burns caused by ionizing radiation, where the dominant mechanism of tissue damage is internal cell damage caused by free radicals, the primary damage mechanism of microwave radiation is by heat.

Non-ionizing radiation electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules

Non-ionizingradiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule. Instead of producing charged ions when passing through matter, non-ionizing electromagnetic radiation has sufficient energy only for excitation, the movement of an electron to a higher energy state. In contrast, ionizing radiation has a higher frequency and shorter wavelength than non-ionizing radiation, and can be a serious health hazard; exposure to it can cause burns, radiation sickness, cancer, and genetic damage. Using ionizing radiation requires elaborate radiological protection measures, which in general are not required with non-ionizing radiation.

Fluorescent lamps and health

Fluorescent lamps have been suggested to affect human health in various ways.

The evidence indicates that of all cancer-related deaths, almost 25–30% are due to tobacco, as many as 30–35% are linked to diet, about 15–20% are due to infections, and the remaining percentage are due to other factors like ionizing radiation, stress, physical activity, environmental pollutants etc. Additionally, the vast majority of non-invasive cancers are non-melanoma skin cancers caused by ultraviolet radiation. Ultraviolet's position on the electromagnetic spectrum is on the boundary between ionizing and non-ionizing radiation. Non-ionizing radio frequency radiation from mobile phones, electric power transmission, and other similar sources have been described as a possible carcinogen by the World Health Organization's International Agency for Research on Cancer, but the link remains unproven.

Cancer is a disease caused by genetic changes leading to uncontrolled cell growth and tumor formation. The basic cause of sporadic (non-familial) cancers is DNA damage and genomic instability. A minority of cancers are due to inherited genetic mutations. Most cancers are related to environmental, lifestyle, or behavioral exposures. Cancer is generally not contagious in humans, though it can be caused by oncoviruses and cancer bacteria. The term "environmental", as used by cancer researchers, refers to everything outside the body that interacts with humans. The environment is not limited to the biophysical environment, but also includes lifestyle and behavioral factors.

Ionizing radiation can cause biological effects which are passed on to offspring through the epigenome. The effects of radiation on cells has been found to be dependent on the dosage of the radiation, the location of the cell in regards to tissue, and whether the cell is a somatic or germ line cell. Generally, ionizing radiation appears to reduce methylation of DNA in cells.

References

  1. Cleveland, Jr., Robert F.; Ulcek, Jerry L. (August 1999). Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields (PDF) (4th ed.). Washington, D.C.: OET (Office of Engineering and Technology) Federal Communications Commission. Retrieved 29 January 2019.
  2. Siegel (8 January 2020). "Cancer statistics, 2020". ACS Journals. 70 (1): 7–30. doi: 10.3322/caac.21590 . PMID   31912902.
  3. 1 2 3 4 Cleaver JE, Mitchell DL (2000). "15. Ultraviolet Radiation Carcinogenesis". In Bast RC, Kufe DW, Pollock RE, et al. (eds.). Holland-Frei Cancer Medicine (5th ed.). Hamilton, Ontario: B.C. Decker. ISBN   1-55009-113-1 . Retrieved 31 January 2011.
  4. Britton, Laurence G. (2010). Avoiding Static Ignition Hazards in Chemical Operations. A CCPS Concept Book. 20. John Wiley & Sons. p. 247. ISBN   9780470935392.
  5. "Radiofrequency Energy Poses Unseen Hazard". EHS Today. Informa USA, Inc. 11 December 2002. Retrieved 3 February 2019.
  6. 1 2 "Acquisition Safety - Radio Frequency Radiation (RFR) Hazards". Naval Safety Center - United States Navy. Archived from the original on 8 August 2014. Retrieved 30 July 2014.
  7. Barnes, Frank S.; Greenebaum, Ben, eds. (2018). Biological and Medical Aspects of Electromagnetic Fields (3 ed.). CRC Press. p. 378. ISBN   9781420009460.
  8. 1 2 3 Cleveland, Jr., Robert F.; Ulcek, Jerry L. (August 1999). "Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields" (PDF). OET Bulletin 56 (Fourth ed.). Office of Engineering and Technology, Federal Communications Commission. p. 7. Retrieved 2 February 2019.
  9. "Standard for Safety Level with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz". IEEE STD. IEEE. C95.1-2005. October 2005.
  10. International Commission on Non-Ionizing Radiation Protection (April 1998). "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)" (PDF). Health Physics. 74 (4): 494–522. PMID   9525427. Archived from the original (PDF) on 13 November 2008.
  11. "What are electromagnetic fields? – Summary of health effects". World Health Organization. Retrieved 7 February 2019.
  12. Delgado JM, Leal J, Monteagudo JL, Gracia MG (May 1982). "Embryological changes induced by weak, extremely low frequency electromagnetic fields". Journal of Anatomy. 134 (3): 533–51. PMC   1167891 . PMID   7107514.
  13. Harland JD, Liburdy RP (1997). "Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line". Bioelectromagnetics. 18 (8): 555–62. doi:10.1002/(SICI)1521-186X(1997)18:8<555::AID-BEM4>3.0.CO;2-1. PMID   9383244.
  14. Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, Rinne JO (July 2006). "Mobile phone affects cerebral blood flow in humans". Journal of Cerebral Blood Flow and Metabolism. 26 (7): 885–90. doi: 10.1038/sj.jcbfm.9600279 . PMID   16495939.
  15. Pal, Martin (2016). "Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression". Journal of Chemical Neuroanatomy. 75 (Pt B): 43–51. doi: 10.1016/j.jchemneu.2015.08.001 . PMID   26300312.
  16. Binhi, Vladimir N (2002). Magnetobiology: underlying physical problems. Repiev, A & Edelev, M (translators from Russian). San Diego: Academic Press. pp. 1–16. ISBN   978-0-12-100071-4. OCLC   49700531.
  17. 1 2 Fry, Luther L.; Garg, Ashok; Guitérrez-Camona, Francisco; Pandey, Suresh K.; Tabin, Geoffrey, eds. (2004). Clinical Practice in Small Incision Cataract Surgery. CRC Press. p. 79. ISBN   0203311825.
  18. 1 2 Sliney DH (1994). "UV radiation ocular exposure dosimetry". Doc Ophthalmol. 88 (3–4): 243–54. doi:10.1007/bf01203678. PMID   7634993.
  19. 1 2 "UV Exposure & Your Health". UV Awareness. Retrieved 10 March 2014.
  20. Extremely Low Frequency Fields Environmental Health Criteria Monograph No.238, chapter 5, page 121, WHO
  21. https://www.cancer.org/cancer/cancer-causes/radiation-exposure/extremely-low-frequency-radiation.html
  22. Fishman, Scott; Ballantyne, Jane; Rathmell, James P., eds. (2010). Bonica's Management of Pain. Lippincott Williams & Wilkins. p. 1589. ISBN   9780781768276.
  23. Knight, Kenneth L.; Draper, David O. (2008). Therapeutic Modalities: The Art and the Science. Lippincott Williams & Wilkins. p. 288. ISBN   9780781757447.
  24. Yu, Chao; Peng, Rui-Yun (2017). "Biological effects and mechanisms of shortwave radiation: a review". Military Medical Research. 4: 24. doi:10.1186/s40779-017-0133-6. PMC   5518414 . PMID   28729909.
  25. Boice JD Jr; Tarone RE (2011). "Cell phones, cancer, and children". Journal of the National Cancer Institute. 103 (16): 1211–3. doi: 10.1093/jnci/djr285 . PMID   21795667.
  26. "IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans" (PDF). press release N° 208 (Press release). International Agency for Research on Cancer. 31 May 2011. Retrieved 2 June 2011.
  27. "Electromagnetic fields and public health: mobile phones - Fact sheet N°193". World Health Organization. October 2014. Retrieved 2 August 2016.
  28. Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz, Canada Safety Code 6, page 63
  29. Frey AH (1962). "Human auditory system response to modulated electromagnetic energy". J Appl Physiol. 17 (4): 689–92. doi:10.1152/jappl.1962.17.4.689. PMID   13895081. S2CID   12359057.
  30. Bergman W (1965), The Effect of Microwaves on the Central Nervous System (trans. from German) (PDF), Ford Motor Company, pp. 1–77, archived from the original (PDF) on 29 March 2018, retrieved 19 December 2018
  31. Michaelson, Sol M. (1975). "Radio-Frequency and Microwave Energies, Magnetic and Electric Fields" (Volume II Book 2 of Foundations of Space Biology and Medicine). In Calvin, Melvin; Gazenko, Oleg G (eds.). Ecological and Physiological Bases of Space Biology and Medicine. Washington, D.C.: NASA Scientific and Technical Information Office. pp. 409–52.
  32. Krans, Brian (1 September 2019). "Smartphone Radiation: iPhones Emitting Double Reported Levels". Ecowatch. Retrieved 9 September 2019.
  33. “Microwaves, Radio Waves, and Other Types of Radiofrequency Radiation.” American Cancer Society, http://www.cancer.org/cancer/cancer-causes/radiation-exposure/radiofrequency-radiation.html
  34. Khan, Farah Naz (18 December 2017). "Is That Airport Security Scanner Really Safe?". Scientific American. Retrieved 28 March 2020.
  35. Characterization of 60GHz Millimeter-Wave Focusing Beam for Living-Body Exposure Experiments, Tokyo Institute of Technology, Masaki KOUZAI et al., 2009
  36. Sullivan, John Burke; Krieger, Gary R., eds. (2001). Clinical Environmental Health and Toxic Exposures. Lippincott Williams & Wilkins. p. 275. ISBN   9780683080278.
  37. "Laser Standards and Classifications". Rockwell Laser Industries. Retrieved 10 February 2019.
  38. "An Overview of the LED and Laser Classification System in EN 60825-1 and IEC 60825-1". Lasermet. Retrieved 10 February 2019.
  39. "What is the minimum safe distance from the welding arc above which there is no risk of eye damage?". The Welding Institute (TWI Global). Archived from the original on 10 March 2014. Retrieved 10 March 2014.
  40. James, William D.; et al. (2011). SPEC - Andrews' Diseases of the Skin (11 ed.). Elsevier Health Sciences. pp. 23–24. ISBN   9781437736199.
  41. Rafnsson, V; Olafsdottir E; Hrafnkelsson J; Sasaki H; Arnarsson A; Jonasson F (2005). "Cosmic radiation increases the risk of nuclear cataract in airline pilots: a population-based case-control study". Arch Ophthalmol. 123 (8): 1102–5. doi: 10.1001/archopht.123.8.1102 . PMID   16087845.
  42. Dobson, R. (2005). "Ozone depletion will bring big rise in number of cataracts". BMJ. 331 (7528): 1292–1295. doi:10.1136/bmj.331.7528.1292-d. PMC   1298891 .
  43. Komarnitsky. "Case study of ultraviolet vision after IOL removal for Cataract Surgery".
  44. Griswold, M. S.; Stark, W. S. (September 1992). "Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet". Vision Research. 32 (9): 1739–1743. doi:10.1016/0042-6989(92)90166-G. ISSN   0042-6989. PMID   1455745.
  45. "Ultraviolet keratitis". Medscape. Retrieved 31 May 2017.
  46. Mironava, T.; Hadjiargyrou, M.; Simon, M.; Rafailovich, M. H. (20 July 2012). "The effects of UV emission from compact fluorescent light exposure on human dermal fibroblasts and keratinocytes in vitro". Photochemistry and Photobiology. 88 (6): 1497–1506. doi:10.1111/j.1751-1097.2012.01192.x. PMID   22724459.
  47. Nicole, Wendee (October 2012). "Ultraviolet leaks from CFLs". Environ. Health Perspect. 120 (10): a387. doi:10.1289/ehp.120-a387. PMC   3491932 . PMID   23026199.
  48. Michaelson, Solomon, ed. (2012). Fundamental and Applied Aspects of Nonionizing Radiation. Springer Science & Business Media. p. xv. ISBN   9781468407600.

Further reading