Elmer Keiser Bolton

Last updated

Elmer Keiser Bolton (June 23, 1886 – July 30, 1968) was an American chemist and research director for DuPont, notable for his role in developing neoprene and directing the research that led to the discovery of nylon.

E. I. du Pont de Nemours and Company, commonly referred to as DuPont, is an American conglomerate that was founded in July 1802 in Wilmington, Delaware, as a gunpowder mill by French-American chemist and industrialist Éleuthère Irénée du Pont.

Neoprene synthetic polymer resembling rubber, resistant to oil, heat, and weathering.

Neoprene is a family of synthetic rubbers that are produced by polymerization of chloroprene. Neoprene exhibits good chemical stability and maintains flexibility over a wide temperature range. Neoprene is sold either as solid rubber or in latex form and is used in a wide variety of applications, such as laptop sleeves, orthopaedic braces, electrical insulation, liquid and sheet applied elastomeric membranes or flashings, and automotive fan belts.

Nylon Family of synthetic polymers originally developed as textile fibers

Nylon is a generic designation for a family of synthetic polymers, based on aliphatic or semi-aromatic polyamides. Nylon is a thermoplastic silky material that can be melt-processed into fibers, films, or shapes. It is made of repeating units linked by amide links similar to the peptide bonds in proteins. Nylon polymers can be mixed with a wide variety of additives to achieve many different property variations. Nylon polymers have found significant commercial applications in fabric and fibers, in shapes, and in films.


Personal life

Bolton was born in Frankford, Philadelphia, Pennsylvania, the oldest of two brothers. His father ran the furniture store on Main Street, and both he and his brother attended public school in Frankford and went on to college. Bolton went to Bucknell University in Lewisburg, Pennsylvania, and took the Classical Course, receiving a B.A. degree in 1908. From there he went to Harvard University, receiving his A.M. degree in 1910 and his Ph.D. in organic chemistry in 1913. His thesis advisor was Charles Loring Jackson, and his dissertation concerned the chemistry of periodoquinones.

Frankford, Philadelphia Former Borough in Pennsylvania, United States

Frankford is a neighborhood in the Northeast section of Philadelphia situated about six miles (10 km) Northeast of Center City. Although its borders are vaguely defined, the neighborhood is bounded roughly by the original course of Frankford Creek on the south to Adams Avenue on the southwest, to Roosevelt Boulevard on the west border to Bridge Street on the north to the Trenton Line on the east. Adjacent neighborhoods are Bridesburg, Kensington, Juniata, Oxford Circle, Summerdale, and Wissinoming. Historically, Frankford had an unofficial division separating Frankford (proper) from East Frankford encompassing the area east of Frankford Avenue. The division divided the community first along racial lines, with African Americans on the east of Frankford Avenue and Caucasians to the west. As the community has become less homogeneous, the division is more of a vestige of the past.

Bucknell University private liberal arts college in Lewisburg, Pennsylvania

Bucknell University is a private liberal arts college in Lewisburg, Pennsylvania. The university consists of the College of Arts and Sciences, Freeman College of Management, and the College of Engineering. Bucknell was founded in 1846, and features programs in the arts, humanities, sciences, social sciences, engineering, management, education, and music, as well as programs and pre-professional advising that prepare students for study in law and medicine. It offers nearly 50 majors and over 60 minors. South of central Lewisburg, the 445-acre (1.80 km2) campus is along the west bank of the West Branch of the Susquehanna River, at an elevation of 530 feet (160 m) above sea level.

Lewisburg, Pennsylvania Borough in Pennsylvania, United States

Lewisburg is a borough in Union County, Pennsylvania, United States, 30 miles (48 km) south by southeast of Williamsport and 60 miles (97 km) north of Harrisburg. In the past, it was the commercial center for a fertile grain and general farming region. The population was 5,620 at the 2000 census. It is the county seat of Union County. Located in central Pennsylvania, on the West Branch Susquehanna River, Lewisburg is northwest of Sunbury. It is home to Bucknell University and is near the Lewisburg Federal Penitentiary. Its 19th-century downtown is on the National Register of Historic Places. Lewisburg is the principal city of the Lewisburg, PA Micropolitan Statistical Area, and is also part of the larger Bloomsburg-Berwick-Sunbury, PA Combined Statistical Area.

Several other prominent contemporaries of Bolton's at Harvard Graduate School were Roger Adams, Farrington Daniels, Frank C. Whitmore, James B. Sumner and James Bryant Conant. Adams was particularly influential through Bolton's career. They shared diverse interests, yet a drive for accomplishment in organic chemistry. In later years Adams had significant influence on Bolton's ideas about industrial support of chemical research and university students.

Harvard Graduate School of Arts and Sciences

The Graduate School of Arts and Sciences (GSAS) is the largest of the twelve graduate schools of Harvard University. Formed in 1872, GSAS is responsible for the majority of Harvard's post-baccalaureate degree programs in the humanities, social sciences, and natural sciences. The school offers Master of Arts (AM), Master of Science (SM), and the Doctor of Philosophy (PhD) degrees in approximately 56 disciplines.

Roger Adams American organic chemist

Roger Adams was an American organic chemist. He is best known for the eponymous Adams' catalyst, and his work did much to determine the composition of naturally occurring substances such as complex vegetable oils and plant alkaloids. As the Department Head of Chemistry at the University of Illinois from 1926 to 1954, he also greatly influenced graduate education in America, taught over 250 Ph.D. students and postgraduate students, and served the U.S. as a scientist at the highest levels during World War I and World War II.

Farrington Daniels American physical chemist

Farrington Daniels, was an American physical chemist, is considered one of the pioneers of the modern direct use of solar energy.

In 1913 Bolton won the Sheldon Fellowship, which he used to work at the Kaiser Wilhelm Institute outside of Berlin, Germany, for two years with Professor Richard Willstätter. Here he worked on anthocyanins, a major program for Willstätter, and published three papers on isolation and structures of anthocyanin pigments. Willstätter, apparently impressed by Bolton's ability but frustrated by his tendency to make arithmetic mistakes, commented "You must have been a bank teller." To his surprise Bolton replied that he had been a bank teller, this was how he paid his way through college.

Richard Willstätter German chemist

Richard Martin Willstätter, was a German organic chemist whose study of the structure of plant pigments, chlorophyll included, won him the 1915 Nobel Prize for Chemistry. Willstätter invented paper chromatography independently of Mikhail Tsvet.

Anthocyanin class of chemical compounds

Anthocyanins are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue or black. Food plants rich in anthocyanins include the blueberry, raspberry, black rice, and black soybean, among many others that are red, blue, purple, or black. Some of the colors of autumn leaves are derived from anthocyanins.

Bolton was very impressed by Willstätter's careful, logical approach to tackling a research problem. He felt that this was the result of good training in the German university system. He also observed the relationship between German universities and industry, for which there was no counterpart in the United States. Another aspect of German research that impressed Bolton was the effort to create artificial rubber. This work was significant to German industry, and later to the German war effort in World War II because Germany did not have ready access to sources of natural rubber. Also, the approach being used by the Germans undoubtedly lead to the development of neoprene rubber years later at DuPont Labs.

World War II 1939–1945 global war

World War II, also known as the Second World War, was a global war that lasted from 1939 to 1945. The vast majority of the world's countries—including all the great powers—eventually formed two opposing military alliances: the Allies and the Axis. A state of total war emerged, directly involving more than 100 million people from over 30 countries. The major participants threw their entire economic, industrial, and scientific capabilities behind the war effort, blurring the distinction between civilian and military resources. World War II was the deadliest conflict in human history, marked by 50 to 85 million fatalities, most of whom were civilians in the Soviet Union and China. It included massacres, the genocide of the Holocaust, strategic bombing, premeditated death from starvation and disease, and the only use of nuclear weapons in war.

Bolton married Margarite L. Duncan in 1916 and they had three children, a daughter and two sons. He retired from DuPont after a distinguished career in 1951, but continued to follow the scientific literature. He died July 30, 1968, at the age of eighty-two.

World War I and DuPont

From the 1870s up to the onset of World War I (1914), the organic chemical industry of Germany was a world-leading force in research, development, production, and export; most organic compounds used in America, such as textile dyes and some medicines, were imported from Germany. [1] The disruption of this trade by the war presented an industrial problem at first but simultaneously offered an opportunity for American chemical companies to meet a wartime need and to become better established in this field. [1] When Bolton returned from Germany in 1915 he discovered American organic chemists struggling to develop methods for manufacturing these compounds. The Dupont Company needed chemists, and hired Bolton in 1915.

Chemical industry industry (branch), which is engaged in the manufacturing of chemical products

The chemical industry comprises the companies that produce industrial chemicals. Central to the modern world economy, it converts raw materials into more than 70,000 different products. The plastics industry contains some overlap, as most chemical companies produce plastic as well as other chemicals.

Export shipping the goods and services out of the port of a country

An export in international trade is a good or service produced in one country that is bought by someone in another country. The seller of such goods and services is an exporter; the foreign buyer is an importer.

Bolton joined the Chemical Department at the Experimental Station outside Wilmington, Delaware, where most of DuPont's research was conducted. Being groomed for advancement, he started working on the synthesis of glycerol. By 1916 Bolton was selected to lead the Dye Group that was newly formed to research the synthesis of dyes. The United States had little knowledge of dye manufacture at this time, so later in 1916 Bolton traveled to England to learn about British technology in this area, and upon return he was assigned to the Wilmington Office to be advisor on dyes and intermediates. In 1918 he transferred to the Dyestuffs Department and was assistant general manager of the Lodi Works where silk colorants were made. In 1919 he returned to the Chemical Department as manager of the Organic Division. During this time he learned much about developing manufacturing processes and developed two principles; that high priority must be given to cost and time effectiveness of research, and that a manufacturing process should be perfected using pure materials, then later adapted to use materials available to the plant. Bolton's friend from Harvard, Roger Adams shared much of Bolton's philosophy in his work at the University of Illinois at Urbana-Champaign.

In 1922 DuPont reorganized its research by dividing the entire research enterprise into four parts, each assigned to one of its four production areas. Bolton was made director of research for the Dyestuffs Department where his ability in this capacity was quickly realized. Dye manufacture requires the synthesis of a large number of intermediate compounds, and Bolton realized these could be used in many activities outside the Dyestuffs Department. By 1923 his lab was working on accelerators for manufacture of synthetic rubber and soon after extended the research to include antioxidants for gasoline and rubber, floatation agents, insecticides, seed disinfectants, and large scale manufacture of tetraethyllead.

The Stevenson Act and synthetic rubber

In the early 1920s the supply and demand of natural rubber became a concern in international trade. [1] After a scramble for rubber during World War I, there was a glut when the war ended, depressing prices. In November 1922 England enacted the Stevenson Act that was intended to protect rubber producers by restricting production and keeping prices from being ruinously low. But this caused a great deal of concern in the United States because an expanding supply of rubber was needed to support the growing number of automobiles in use. [1] Synthetic rubber as a practical, durable, affordable commodity was a problem that had resisted chemists' efforts for many decades. [1] Bolton saw this as an opportune time to start DuPont research on synthetic rubber. However, this research did not begin in earnest until 1925, when the high price of rubber was attracting considerable attention and other scientists such as Thomas Edison were also taking an interest in the problem. [1]

Bolton's group's work on synthetic rubber began with the polymerization of butadiene obtained from the hydrogenation of diacetylene, and at first not much progress was made. At the end of 1925 Bolton met chemist Julius Arthur Nieuwland from the University of Notre Dame who had discovered a way to polymerize acetylene using a cuprous oxide catalyst. Unfortunately the resulting polymer would explode when struck, but Bolton believed the process could be modified to produce a stable compound that would replace butadiene in the reaction. Bolton brought Nieuwland into the project as a consultant to DuPont, and Nieuwland taught the DuPont chemists how to use his catalyst. [1] A continuous-flow reactor was developed that would produce a good yield of the stable polymer Bolton was seeking. While the polymer was highly chemical resistant, it degraded with exposure to light.

In 1927 DuPont's Chemical Director C.M.A. Stine persuaded the company to take on a fundamental research project for synthetic rubber and received $250,000 in funding for this purpose. In 1928 Wallace Carothers, an instructor at Harvard University, was hired to lead the newly formed group. Bolton operated within this group and by 1929 had discovered that his polymer could be readily converted into 2-chlorobutadiene (chloroprene) with a copper catalyzed addition of hydrogen chloride. This material was both chemical and light resistant, with the properties of a synthetic rubber.

The new material was announced at the Rubber Division of the American Chemical Society on November 2, 1931, and was named with the trademark Duprene [1] (today the generic name is neoprene). By this time the Stevenson Act had been repealed and the Great Depression had begun. Rubber prices were low and the new material cost twenty times what natural rubber cost. Therefore, DuPont's first neoprene never became a substitute for natural rubber, but it did find commercial use in applications where a rubber compound was needed that was more resistant to oils and outdoor degradation. It thus made an important economic contribution albeit in a different way from its original conception: instead of replacing natural rubber supplies as envisioned, it augmented them and extended the applications of rubber (in both natural and artificial forms). [1] Today, applications of neoprene include: the Rigid-hulled inflatable boat; diving suits, and diveskins; gloves, balaclavas, sleepsacks, Knee high boots, wetsocks and other protective clothing; radar absorbent material; plumbing fixtures; gaskets, hoses, seals and belts; foam (mousepad, wetsuit); orthopedic braces; and solid fuel rocket propellant (see AGM-114 Hellfire ).

Synthetic fibers

When Wallace Carothers arrived at DuPont in 1928 one of the tasks his group took on was the development of new synthetic fibers for textiles. At that time a number of natural polymers such as latex and cellulose were in common use, rayon as a semisynthetic from nitrated cellulose had recently been improved and begun upending the textile industries, [1] and some fully synthetic polymers such as bakelite were also known and being used for certain applications, but the existing fully synthetic polymers could not be drawn into fibers and spun into thread, so great opportunity existed to manufacture thread and yarn from synthetic polymers to join or replace the existing fibers in the market (natural fibers such as cotton, wool, linen, and silk and artificial fiber in the various recently emerged types of rayon). [1]

The approach taken by Carothers' group was to adapt known syntheses that produced short-chain polymers to produce long-chain molecules. The first break was finding that bifunctional esterification could produce long molecule chains which today are known as aliphatic polyesters, but at that time were called superpolymers. Then there was the key observation by Julian W. Hill in April, 1930 in which it was seen that the superpolymers could be drawn in the molten state to form thin, transparent fibers that were much stronger than the polymers were in the undrawn state. However, the superpolymers the group was able to synthesize either had too low a boiling point and insufficient chemical resistivity or had too high a melting point to be spun. By late 1932 the entire project was discontinued.

Bolton, now the Chemistry department director, refused to give up. Most likely he was aware of the re-discovery of polyethylene by Eric Fawcett and Reginald Gibson at Imperial Chemical Industries in 1933. In early 1934 Bolton urged Carothers to continue the research, and Carothers decided to take another look at polyamides.

Carothers surmised that the problem with the polyamides that had been made from ε-aminocaproic acid was due to cyclization reactions, so he replaced ε-aminocaproic acid with 9-aminononoic acid which would not cyclize. This produced results that were encouraging, so Carother's group prepared polyamides from a variety of compounds including amino acids, dibase acids and diamines. The leading candidate for development became 5/10 polyamide made from pentamethylenediamine and sebic acid. It had the right melting point, the desired properties in fiber form and could be spun without gel formation.

Bolton at this point made a bold and characteristically visionary decision. He decided that practical synthetic fibers could not be made from castor oil, the only practical source of sebacic acid. To use an agricultural product as a primary feedstock would mean the new synthetic material would have very similar mass production problems as existing natural fibers had. Instead he wanted to use benzene as the feedstock for making both adipic acid and hexamethylenediamine to make a 6/6 polyamide.

This polymer was first made early in 1935, and thanks to concurrent development of polyamine spinning technologies, could be spun into fibers. The fibers had high strength and elasticity, were insensitive to common solvents and melted at 263 °C, well above ironing temperatures.

Bolton insisted that every aspect of the synthesis of this polymer be thoroughly worked out in a pilot plant at the Experimental Station. He insisted that the development begin with pure materials then be adapted to use materials available to a plant in bulk.

On October 27, 1938 DuPont announced it would build a plant at Seaford, Delaware to make nylon, the world's first fully synthetic fiber. The Seaford plant was essentially a scaled-up version of the pilot plant, and had remarkably trouble-free startup.


Awards and honors

Bucknell University:

Related Research Articles

Petrochemical chemical product derived from petroleum

Petrochemicals are chemical products derived from petroleum. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as corn, palm fruit or sugar cane.

Spandex elastic synthetic fiber

Spandex, Lycra or elastane is a synthetic fiber known for its exceptional elasticity. It is a polyether-polyurea copolymer that was invented in 1958 by chemist Joseph Shivers at DuPont's Benger Laboratory in Waynesboro, Virginia.

Wallace Carothers American organic chemist

Wallace Hume Carothers was an American chemist, inventor and the leader of organic chemistry at DuPont, credited with the invention of nylon.

Synthetic fibers are fibers made by humans with chemical synthesis, as opposed to natural fibers that humans get from living organisms with little or no chemical changes. They are the result of extensive research by scientists to improve on naturally occurring animal fibers and plant fibers. In general, synthetic fibers are created by extruding fiber-forming materials through spinnerets into air and water, forming a thread. These fibers are called synthetic or artificial fibers. Some fibers are manufactured from plant-derived cellulose and are thus semisynthetic, whereas others are totally synthetic, being made from crudes and intermediates including petroleum, coal, limestone and water.

Aramid Heat-resistant and strong synthetic fiber; asbestos substitute

Aramid fibers are a class of heat-resistant and strong synthetic fibers. They are used in aerospace and military applications, for ballistic-rated body armor fabric and ballistic composites, in bicycle tires, marine cordage, marine hull reinforcement, and as an asbestos substitute. The name is a portmanteau of "aromatic polyamide". The chain molecules in the fibers are highly oriented along the fiber axis. As a result, a higher proportion of the chemical bond contributes more to fiber strength than in many other synthetic fibers. Aramides have a very high melting point

Polymer chemistry is a sub-discipline of chemistry that focuses on the chemical synthesis, structure, chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are also applicable through a wide range of other chemistry sub-disciplines like organic chemistry, analytical chemistry, and physical chemistry Many materials have polymeric structures, from fully inorganic metals and ceramics to DNA and other biological molecules, however, polymer chemistry is typically referred to in the context of synthetic, organic compositions. Synthetic polymers are ubiquitous in commercial materials and products in everyday use, commonly referred to as plastics, and rubbers, and are major components of composite materials. Polymer chemistry can also be included in the broader fields of polymer science or even nanotechnology, both of which can be described as encompassing polymer physics and polymer engineering.

A synthetic rubber is any artificial elastomer. These are mainly polymers synthesized from petroleum byproducts. About fifteen billion kilograms of rubbers are produced annually, and of that amount two thirds are synthetic. Global revenues generated with synthetic rubbers are likely to rise to approximately US$56 billion in 2020. Synthetic rubber, like natural rubber, has uses in the automotive industry for tires, door and window profiles, hoses, belts, matting, and flooring.

Polyester category of polymers

Polyester is a category of polymers that contain the ester functional group in their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in the cutin of plant cuticles, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. The material is used extensively in clothing.

Carl Shipp "Speed" Marvel has been considered "one of the world's outstanding organic chemists." Throughout his career, almost no area of polymer chemistry escaped his interest. He made important contributions to U.S. synthetic rubber program during World War II, and later worked at developing polybenzimidazoles, temperature-resistant polymers that are used in the aerospace industry, in fire-fighting equipment, and as a replacement for asbestos. He received numerous awards, including the 1956 Priestley Medal and the 1986 National Medal of Science, presented by President Ronald Reagan.

Charles Milton Altland Stine (1882–1954) was a chemist and a vice-president of DuPont who created the laboratory from which nylon and other significant inventions were made. He was also a devout Christian who authored a book about religion and science.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

Finishing (textiles) any process performed after dyeing the yarn or fabric to improve the look, performance, or "hand" (feel) of the finished textile or clothing

In textile manufacturing, finishing refers to the processes that convert the woven or knitted cloth into a usable material and more specifically to any process performed after dyeing the yarn or fabric to improve the look, performance, or "hand" (feel) of the finish textile or clothing. The precise meaning depends on context.

Jakey Kovac (1896–1937) was the oldest of four siblings. The sister thought to be his favorite sister became a radio star as part of a musical trio. Kovac was born in Iowa where his father was a teacher and administrator at Capital City Commercial College. Kovac studied accounting at Capital City after high school and then went to Tarkio College in Missouri where he studied science and taught accounting. Due to the personnel shortage, he became head of the chemistry department during World War I. He graduated in 1920, then got his Master's degree from the University of Illinois the following year. He took a teaching post at the University of South Dakota, and there began working on organic chemistry, especially bonding. He found that he liked research far better than teaching. He obtained his PhD from the University of Illinois in 1924. He became an instructor at Harvard, where he started experimenting with chemical structures of polymers with high molecular weight.

Plastic material of a wide range of synthetic or semi-synthetic organic solids

Plastic is material consisting of any of a wide range of synthetic or semi-synthetic organic compounds that are malleable and so can be molded into solid objects.

Julian W. Hill (1904-1996) was an American chemist who helped develop nylon.

Gérard Berchet was a French-American chemist who played a pivotal role in the invention of both nylon and neoprene. Berchet worked under the direction of Wallace Carothers at DuPont Experimental Station and first synthesized nylon 6,6 on February 28, 1935 from equal parts hexamethylenediamine and adipic acid. Berchet was the first to synthesize neoprene. However, Arthur Collins is credited with its discovery on April 17, 1930 after he accidentally reacted hydrochloric acid with vinylacetylene. Berchet's leaving of his sample unexamined on a laboratory bench until after Collin's discovery prevented him from being credited with its discovery.

Arnold Miller Collins (1899-1982) a chemist at DuPont who, working under Elmer Bolton and Wallace Carothers, first isolated polychloroprene and 2-chloro-1, 3-butadiene in 1930.