This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Part of a series on |
Pollution |
---|
The environmental effects of transport are significant because transport is a major user of energy, and burns most of the world's petroleum. This creates air pollution, including nitrous oxides and particulates, and is a significant contributor to global warming through emission of carbon dioxide. [2] [3] Within the transport sector, road transport is the largest contributor to global warming. [2]
Environmental regulations in developed countries have reduced the individual vehicle's emission. However, this has been offset by an increase in the number of vehicles, and increased use of each vehicle (an effect known as the Jevons paradox). [2] Some pathways to reduce the carbon emissions of road vehicles have been considerably studied. [4] Energy use and emissions vary largely between modes, causing environmentalists to call for a transition from air and road to rail and human-powered transport, and increase transport electrification and energy efficiency.
Other environmental impacts of transport systems include traffic congestion and automobile-oriented urban sprawl, which can consume natural habitat and agricultural lands. By reducing transport emissions globally, it is predicted that there will be significant positive effects on Earth's air quality, acid rain, smog, and climate change. [5] Health effects of transport include noise pollution and carbon monoxide emissions.
While electric cars are being built to cut down CO2 emission at the point of use, an approach that is becoming popular among cities worldwide is to prioritize public transport, bicycles, and pedestrian movement. Redirecting vehicle movement to create 20-minute neighbourhoods [6] that promotes exercise while greatly reducing vehicle dependency and pollution. Some policies are levying a congestion charge [7] to cars for travelling within congested areas during peak time.
The transportation sector is a major source of greenhouse gas emissions (GHGs) in the United States. An estimated 30 percent of national GHGs are directly attributable to transportation—and in some regions, the proportion is even higher. Transportation methods are the greatest contributing source of GHGs in the U.S., accounting for 47 percent of the net increase in total U.S. emissions since 1990. [8]
Other environmental effects of transport systems include traffic congestion and automobile-oriented urban sprawl, which can consume natural habitat and agricultural lands. By reducing transportation emissions globally, it is predicted that there will be significant positive effects on Earth's air quality, acid rain, smog and climate change. [9]
The health effects of transport emissions are also of concern. A recent survey of the studies on the effect of traffic emissions on pregnancy outcomes has linked exposure to emissions to adverse effects on gestational duration and possibly also intrauterine growth. [10]
As listed above direct effects such as noise pollution and carbon monoxide emissions create direct and harmful effects on the environment, along with indirect effects. The indirect effects are often of higher consequence which leads to the misconception that it's the opposite since it is frequently understood that initial effects cause the most damage. For example, particulates which are the outcome of incomplete combustion done by an internal combustion engine, are not linked with respiratory and cardiovascular problems since they contribute to other factors not only to that specific condition. Even though the environmental effects are usually listed individually there are also cumulative effects. The synergetic consequences of transport activities. They take into account the varied direct and indirect effects on an ecosystem. Climate change is the sum total result of several natural and human-made factors. 15% of global CO2 emissions are attributed to the transport sector. [11]
The following table compares the emissions of the different transport means for passenger transport in Europe: [12]
Transport means | Passengers average | Emissions (g CO2/(km*pax)) |
---|---|---|
Train | 156 | 14 |
Small car | 4 | 42 |
Big car | 4 | 55 |
Bus | 12.7 | 68 |
Motorbike | 1.2 | 72 |
Small car | 1.5 | 104 |
Big car | 1.5 | 158 |
Plane | 88 | 285 |
Aviation emissions vary based on length of flight. For covering long distances, longer flights are a better investment of the high energy costs of take-off and landing than very short flights, yet by nature of their length inevitably use much more energy. CO2 emissions from air travel range from 0.24 kg CO2 per passenger mile (0.15 kg/km per passenger) for short flights down to 0.18 kg CO2 per passenger mile (0.11 kg/km per passenger) for long flights. [13] [14] Researchers have been raising concern about the globally increasing hypermobility of society, involving frequent and often long-distance air travel and the resulting environmental and climate effects. This threatens to overcome gains made in the efficiency of aircraft and their operations. [15] Climate scientist Kevin Anderson raised concern about the growing effect of air transport on the climate in a paper[13] and a presentation[14] in 2008. He has pointed out that even at a reduced annual rate of increase in UK passenger air travel and with the government's targeted emissions reductions in other energy use sectors, by 2030 aviation would be causing 70% of the UK's allowable CO2 emissions.
Worse, aircraft emissions at stratospheric altitudes have a greater contribution to radiative forcing than do emissions at sea level, due to the effects of several greenhouses gases in the emissions, apart from CO2. [16] The other GHGs include methane (CH4), NOx which leads to ozone [O3], and water vapor. Overall, in 2005 the radiative forcing caused by aviation amounted to 4.9% of all human-caused radiative forcing on Earth's heat balance. [17]
Cycling has a low carbon-emission and low environmental footprint. A European study of thousands of urban dwellers found that daily mobility-related CO2 emissions were 3.2 kg (7.1 lb) of CO2 per person, with car travel contributing 70% and cycling 1% (including the entire lifecycle of vehicles and fuels). 'Cyclists' had 84% lower lifecycle CO2 emissions from all daily travel than 'non-cyclists', and the more people cycled on a daily basis, the lower was their mobility-related carbon footprint. Motorists who shifted travel modes from cars to bikes as their 'main method of travel' emitted 7.1 kg (16 lb) less CO2 per day. [18] Regular cycling was most strongly associated with reduced life cycle CO2 emissions for commuting and social trips. [18]
Changing from motorised to non-motorised travel behaviour can also have significant effects. A European study of nearly 2000 participants showed that an average person cycling 1 trip/day more and driving 1 trip/day less for 200 days a year would decrease mobility-related lifecycle CO2 emissions by about 0.5 tonnes over a year, representing a substantial share of average per capita CO2 emissions from transport (which are about 1.5 to 2.5 tonnes per year, depending on where you live). [19]
When burned, unleaded gasoline produces 8.91 kg (19.6 lb) of CO2 per gallon, while diesel produces 10.15 kg (22.4 lb). [22] CO2 emissions originating from ethanol are disregarded by international agreements however so gasoline containing 10% ethanol would only be considered to produce 8.02 kg (17.7 lb) of CO2 per gallon. [23] The average fuel economy for new light-duty vehicles sold in the US of the 2017 model year was about 24.9 MPG giving around 0.36 kg (0.79 lb) of CO2 per mile. [24] The Department of Transportation's MOBILE 6.2 model, used by regional governments to model air quality, uses a fleet average (all cars, old and new) of 20.3 mpg giving around 0.44 kg (0.97 lb) of CO2 per mile. [25]
In Europe, the European Commission enforced that from 2015 all new cars registered shall not emit more than an average of 0.13 kg (0.29 lb) of CO2 per kilometre (kg CO2/km). The target is that by 2021 the average emissions for all new cars is 0.095 kg (0.21 lb) of CO2 per kilometre. [26]
On average, inner city commuting buses emit 0.3 kg (0.66 lb) of CO2 per passenger mile (0.18 kg/km per passenger), and long distance (>20 mi, >32 km) bus trips emit 0.08 kg of CO2 per passenger mile (0.05 kg/km per passenger). [27] Road and transportation conditions vary, so some carbon calculations add 10% to the total distance of the trip to account for potential traffic jams, detours, and pit-stops that may arise. [13]
On average, commuter rail and subway trains emit 0.17 kg (0.37 lb) of CO2 per passenger mile (0.11 kg/km per passenger), and long distance (>20 mi, >32 km) trains emit 0.19 kg (0.42 lb) of CO2 per passenger mile (0.12 kg/km per passenger). [27] Some carbon calculations add 10% to the total trip distance to account for detours, stop-overs, and other issues that may arise. [13]
Electric trains contributes relatively less to the pollution as pollution happens in the power plants which are lot more efficient than diesel driven engines. [28] Generally electric motors even when accounting for transmission losses are more efficient than internal combustion engines with efficiency further improving through recuperative braking.
Trains contain many different parts that have the potential to create noise. Wheels, engines and non-aerodynamic cargo are prone to vibrate at certain speeds. Noise caused from directly neighboring railways has the potential to lessen value to nearby property. In order to combat unbearable volumes resulting from railways, US diesel locomotives are required to be quieter than 90 decibels at 25 meters away since 1979. This noise, however, has been shown to be harmless to animals, except for horses who will become skittish. [29]
Railway cargo can be a cause of pollution. [29] Air pollution can occur from boxcars carrying materials such as iron ore, coal, soil, or aggregates and exposing these materials to the air. This can release nitrogen oxide, carbon monoxide, sulphur dioxide, or hydrocarbons into the air. Liquid pollution can come from railways contributing to a runoff into water sources, like groundwater or rivers and can result from spillage of fuels like oil into water supplies or onto land or discharge of human waste. [29]
When railways are built in wilderness areas, the environment is visually altered by cuttings, embankments, dikes, and stilts. [29]
The fleet emission average for delivery vans, trucks and big rigs is 10.17 kg (22.4 lb)CO2 per gallon of diesel consumed. Delivery vans and trucks average about 7.8 mpg (or 1.3 kg of CO2 per mile) while big rigs average about 5.3 mpg (or 1.92 kg of CO2 per mile). [30]
Discharges of sewage into water bodies can come from many sources, including wastewater treatment facilities, runoff from livestock operations, and vessels. These discharges have the potential to impair water quality, adversely affecting aquatic environments and increasing the risks to human health. While sewage discharges have potentially wide-ranging effects on all aquatic environments, the effects may be especially problematic in marinas, slow-moving rivers, lakes and other bodies of water with low flushing rates. Environmentally this creates invasive species that often drive other species to their extinction and cause harm to the environment and local businesses. [31]
Emissions from ships have much more significant environmental effects; many ships go internationally from port to port and are not seen for weeks, contributing to air and water pollution on its voyage. Emission of greenhouse gases displaces the amount of gas that allows for UV-rays through the ozone. Sulfur and nitrogen compounds emitted from ship will oxidize in the atmosphere to form sulfate and nitrate. Emissions of nitrogen oxides, carbon monoxide, and volatile organic compounds (VOC) will lead to enhanced surface ozone formation and methane oxidation, depleting the ozone. The effect of the international ship emission on the distribution of chemical compounds such as NOx, CO, O3, •OH, SO2, HNO3, and sulfate is studied using a global chemical transport model (CTM), the Oslo CTM2. In particular, the large-scale distribution and diurnal variation of the oxidants and sulfur compounds are studied interactively. Meteorological data (winds, temperature, precipitation, clouds, etc.) used as input for the CTM calculations are provided by a weather prediction model. [32]
Shipping Emissions Factors: [33]
Mode of Transport | kg of CO2 per Ton-Mile |
---|---|
Air cargo | 0.8063 |
Truck | 0.1693 |
Train | 0.1048 |
Sea freight | 0.0403 |
The road haulage industry is contributing around 20% of the UK's total carbon emissions a year, with only the energy industry having a larger contribution, at around 39%. Road haulage is a significant consumer of fossil fuels and associated carbon emissions – HGV vehicles account for almost 20 percent of total emissions. [34]
This section needs expansion. You can help by adding to it. (May 2013) |
Sustainable transport is transport with either lower environmental footprint per passenger, per distance or higher capacity. Typically sustainable transport modes are rail, bicycle and walking.
Road-Rail Parallel Layout is a design option to reduce the environmental effects of new transportation routes by locating railway tracks alongside a highway. In 1984 the Paris—Lyon high-speed rail route in France had about 14% parallel layout with the highway, and in 2002, 70% parallel layout was achieved with the Cologne–Frankfurt high-speed rail line.
Mitigation does not entirely involve large-scale changes such as road construction, but everyday people can contribute. Walking, cycling trips, short or non-commute trips, can be an alternate mode of transportation when travelling short or even long distances. A multi-modal trip involving walking, a bus ride, and bicycling may be counted solely as a transit trip. Economic evaluations of transportation investments often ignore the true effects of increased vehicular traffic—incremental parking, traffic accidents, and consumer costs—and the real benefits of alternative modes of transport. Most travel models do not account for the negative effects of additional vehicular traffic that result from roadway capacity expansion and overestimate the economic benefits of urban highway projects. Transportation planning indicators, such as average traffic speeds, congestion delays, and roadway level of service, measure mobility rather than accessibility. [36]
Climate change is a factor that 67% of Europeans consider when choosing where to go on holiday. Specifically, people under the age of 30 are more likely to consider climate implications of travelling to vacation spots. [37] [38] 52% of young Europeans, 37% of people ages 30–64 and 25% of people aged above 65, state that in 2022 they will choose to travel by plane. 27% of young people claim they will travel to a faraway destination. [39] [40]
Europeans expect lifestyle changes to experience great transformation in the next 20 years. 31% of respondents to a climate survey conducted in 2021 believe that most people will no longer own their own vehicle, while 63% believe that teleworking will become the norm to reduce emissions and mitigate the effects of climate change. 48% predict that energy quotas will be individually assigned. [41]
This section is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic.(August 2019) |
As large retail corporations in recent years have focused attention on eCommerce, many have begun to offer fast (e.g. 2-day) shipping[ citation needed ]. These fast shipping options get products and services to the hands of buyers faster than ever before, but have they are negative externalities on public roads and climate change [ citation needed ]. A survey in 2016 by UPS shows that 46% of online shoppers abandoned an unused shopping cart due to a shipping time that was way too long and that 1 and 3 online shoppers look at the speed of delivery from the marketplaces they buy from. [42] Consumers are demanding the fast delivery of goods and services. AlixPartners LLP found that consumers expect to wait an average of 4.8 days for delivery, down from 5.5 days in 2012. And the share of those who are willing to wait more than five days has declined to 60% from 74% in four years. [43]
E-commerce shopping can be seen as the best way to reduce one's carbon footprint. Yet, this is only true to some extent. Shopping online is less energy intensive than driving to a physical store location and then driving back home. This is because shipping can take advantage of economies of scale. However, these benefits are diminished when e-commerce stores package items separately or when customers buy items separately and do not take the time to one stop shop . [44] For large stores with a large online presence, they can have millions of customers opting for these shipping benefits. As a result, they are unintentionally increasing carbon emissions from not consolidating their purchases. Josué Velázquez-Martínez, a sustainable logistics professor at MIT notes that "if you are willing to wait a week for shipping, you just kill 20 trees instead of 100 trees." [45] The only time shipping works in being less energy intensive is when customer do not choose rush delivery, which includes 2-day shipping. M. Sanjayan, the CEO of Conservation International, explains that getting your online purchase delivered at home in just two days puts more polluting vehicles on the road. [46] In addition to standard shipping, consumers must be satisfied with their purchases so that they do not constantly returns items. By returning shipments on standard shipping, the positive contribution to environment is being taken back. In research done by Vox, they found in 2016 transportation overtook power plants as the top prouder of carbon dioxide emissions in the US for the first time since 1979. [47] These environmental issues came from nearly a quarter of transportation trucks that either carry medium and heavy duty loads of merchandise; these trucks are often the ones doing e-commerce shipping.
Since 2009, UPS deliveries have increased by 65%. [48] With the increase in deliveries, there is a demand for trucks on the road, resulting in more carbon emissions in our atmosphere. More recently, there has been research to help combat greenhouse gas emission to the atmosphere with better traffic signals. These WiFi signals cut down on wait time at stop lights and reduce wasting fuel. These signals help automobiles adjust their velocity so that they can increase their chances of getting through the light, smoothing travel patterns and obtaining fuel-economy benefits. These small adjustments result in big changes in fuel savings. The cities that have started implementing smart light technology such as San Jose, CA and Las Vegas, NV. Light technology has shown to save 15-20% in fuel savings. [44] According to the United States Environmental Protection Agency, transportation is the second leading source of GHG emission behind electricity and project that by 2050 freight transportation emissions will pass passenger vehicle emissions. [48] Another technological advancements is truck platooning, trucks are able to send signals to neighboring trucks about their speed. This communication between vehicles reduces congestion on the roads and reduce drag, increasing fuel savings by 10 to 20%. [44]
With these tech implementations in major cities and towns, there is the ability to reach an optimal level of pollution given the rise of e-commerce shipments. The figure above illustrates that decreasing emissions would result in the equilibrium for the market of shipping population, which can be done by consolidating packages, light technology, or truck platooning.
An environmental tax, ecotax, or green tax is a tax levied on activities which are considered to be harmful to the environment and is intended to promote environmentally friendly activities via economic incentives. One notable example is a carbon tax. Such a policy can complement or avert the need for regulatory approaches. Often, an ecotax policy proposal may attempt to maintain overall tax revenue by proportionately reducing other taxes ; such proposals are known as a green tax shift towards ecological taxation. Ecotaxes address the failure of free markets to consider environmental impacts.
Fuel efficiency is a form of thermal efficiency, meaning the ratio of effort to result of a process that converts chemical potential energy contained in a carrier (fuel) into kinetic energy or work. Overall fuel efficiency may vary per device, which in turn may vary per application, and this spectrum of variance is often illustrated as a continuous energy profile. Non-transportation applications, such as industry, benefit from increased fuel efficiency, especially fossil fuel power plants or industries dealing with combustion, such as ammonia production during the Haber process.
The California Air Resources Board is an agency of the government of California that aims to reduce air pollution. Established in 1967 when then-governor Ronald Reagan signed the Mulford-Carrell Act, combining the Bureau of Air Sanitation and the Motor Vehicle Pollution Control Board, CARB is a department within the cabinet-level California Environmental Protection Agency.
Vehicle emissions control is the study of reducing the emissions produced by motor vehicles, especially internal combustion engines. The primary emissions studied include hydrocarbons, volatile organic compounds, carbon monoxide, carbon dioxide, nitrogen oxides, particulate matter, and sulfur oxides. Starting in the 1950s and 1960s, various regulatory agencies were formed with a primary focus on studying the vehicle emissions and their effects on human health and the environment. As the worlds understanding of vehicle emissions improved, so did the devices used to mitigate their impacts. The regulatory requirements of the Clean Air Act, which was amended many times, greatly restricted acceptable vehicle emissions. With the restrictions, vehicles started being designed more efficiently by utilizing various emission control systems and devices which became more common in vehicles over time.
Emission standards are the legal requirements governing air pollutants released into the atmosphere. Emission standards set quantitative limits on the permissible amount of specific air pollutants that may be released from specific sources over specific timeframes. They are generally designed to achieve air quality standards and to protect human life. Different regions and countries have different standards for vehicle emissions.
A zero-emission vehicle, or ZEV, is a vehicle that does not emit exhaust gas or other pollutants from the onboard source of power. The California definition also adds that this includes under any and all possible operational modes and conditions. This is because under cold-start conditions for example, internal combustion engines tend to produce the maximum amount of pollutants. In a number of countries and states, transport is cited as the main source of greenhouse gases (GHG) and other pollutants. The desire to reduce this is thus politically strong.
Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an exhaust pipe, flue gas stack, or propelling nozzle. It often disperses downwind in a pattern called an exhaust plume.
Sustainable transport refers to ways of transportation that are sustainable in terms of their social and environmental impacts. Components for evaluating sustainability include the particular vehicles used for road, water or air transport; the source of energy; and the infrastructure used to accommodate the transport. Transport operations and logistics as well as transit-oriented development are also involved in evaluation. Transportation sustainability is largely being measured by transportation system effectiveness and efficiency as well as the environmental and climate impacts of the system. Transport systems have significant impacts on the environment, accounting for between 20% and 25% of world energy consumption and carbon dioxide emissions. The majority of the emissions, almost 97%, came from direct burning of fossil fuels. In 2019, about 95% of the fuel came from fossil sources. The main source of greenhouse gas emissions in the European Union is transportation. In 2019 it contributes to about 31% of global emissions and 24% of emissions in the EU. In addition, up to the COVID-19 pandemic, emissions have only increased in this one sector. Greenhouse gas emissions from transport are increasing at a faster rate than any other energy using sector. Road transport is also a major contributor to local air pollution and smog.
A green vehicle, clean vehicle, eco-friendly vehicle or environmentally friendly vehicle is a road motor vehicle that produces less harmful impacts to the environment than comparable conventional internal combustion engine vehicles running on gasoline or diesel, or one that uses certain alternative fuels. Presently, in some countries the term is used for any vehicle complying or surpassing the more stringent European emission standards, or California's zero-emissions vehicle standards, or the low-carbon fuel standards enacted in several countries.
An emission intensity is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP). Emission intensities are used to derive estimates of air pollutant or greenhouse gas emissions based on the amount of fuel combusted, the number of animals in animal husbandry, on industrial production levels, distances traveled or similar activity data. Emission intensities may also be used to compare the environmental impact of different fuels or activities. In some case the related terms emission factor and carbon intensity are used interchangeably. The jargon used can be different, for different fields/industrial sectors; normally the term "carbon" excludes other pollutants, such as particulate emissions. One commonly used figure is carbon intensity per kilowatt-hour (CIPK), which is used to compare emissions from different sources of electrical power.
Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement's goal of limiting global warming to below 2 °C.
Various energy conservation measures are taken in the United Kingdom.
Aircraft engines produce gases, noise, and particulates from fossil fuel combustion, raising environmental concerns over their global effects and their effects on local air quality. Jet airliners contribute to climate change by emitting carbon dioxide, the best understood greenhouse gas, and, with less scientific understanding, nitrogen oxides, contrails and particulates. Their radiative forcing is estimated at 1.3–1.4 that of CO2 alone, excluding induced cirrus cloud with a very low level of scientific understanding. In 2018, global commercial operations generated 2.4% of all CO2 emissions.
Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide, from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC, of which 484±20 GtC from fossil fuels and industry, and 219±60 GtC from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.
The United States produced 5.2 billion metric tons of carbon dioxide equivalent greenhouse gas (GHG) emissions in 2020, the second largest in the world after greenhouse gas emissions by China and among the countries with the highest greenhouse gas emissions per person. In 2019 China is estimated to have emitted 27% of world GHG, followed by the United States with 11%, then India with 6.6%. In total the United States has emitted a quarter of world GHG, more than any other country. Annual emissions are over 15 tons per person and, amongst the top eight emitters, is the highest country by greenhouse gas emissions per person.
Transport or transportation is the intentional movement of humans, animals, and goods from one location to another. Modes of transport include air, land, water, cable, pipelines, and space. The field can be divided into infrastructure, vehicles, and operations. Transport enables human trade, which is essential for the development of civilizations.
Individual action on climate change can include personal choices with regards to diet, travel, lifestyle, consumption of goods and services, family size and so on. Individuals can also get active in local and political advocacy work around climate action. People who wish to reduce their carbon footprint, can for example reduce air travel and driving cars, they can eat mainly a plant-based diet, use consumer products for longer, or have fewer children. Avoiding meat and dairy foods has been called "the single biggest way" how an individual can reduce their environmental impact. Scholars find that excessive consumption is more to blame for climate change than population increase. High consumption lifestyles have a greater environmental impact, with the richest 10% of people emitting about half the total lifestyle emissions.
Mobile source air pollution includes any air pollution emitted by motor vehicles, airplanes, locomotives, and other engines and equipment that can be moved from one location to another. Many of these pollutants contribute to environmental degradation and have negative effects on human health. To prevent unnecessary damage to human health and the environment, environmental regulatory agencies such as the U.S. Environmental Protection Agency have established policies to minimize air pollution from mobile sources. Similar agencies exist at the state level. Due to the large number of mobile sources of air pollution, and their ability to move from one location to another, mobile sources are regulated differently from stationary sources, such as power plants. Instead of monitoring individual emitters, such as an individual vehicle, mobile sources are often regulated more broadly through design and fuel standards. Examples of this include corporate average fuel economy standards and laws that ban leaded gasoline in the United States. The increase in the number of motor vehicles driven in the U.S. has made efforts to limit mobile source pollution challenging. As a result, there have been a number of different regulatory instruments implemented to reach the desired emissions goals.
The externalities of automobiles, similar to other economic externalities, represent the measurable costs imposed on those who do not own the vehicle, in contrast to the costs borne by the vehicle owner. These externalities include factors such as air pollution, noise, traffic congestion, and road maintenance costs, which affect the broader community and environment. Additionally, these externalities contribute to social injustice, as disadvantaged communities often bear a disproportionate share of these negative impacts. According to Harvard University, the main externalities of driving are local and global pollution, oil dependence, traffic congestion and traffic collisions; while according to a meta-study conducted by the Delft University these externalities are congestion and scarcity costs, accident costs, air pollution costs, noise costs, climate change costs, costs for nature and landscape, costs for water pollution, costs for soil pollution and costs of energy dependency.
Usage of electric cars damage people’s health and the environment less than similar sized internal combustion engine cars. While aspects of their production can induce similar, less or different environmental impacts, they produce little or no tailpipe emissions, and reduce dependence on petroleum, greenhouse gas emissions, and deaths from air pollution. Electric motors are significantly more efficient than internal combustion engines and thus, even accounting for typical power plant efficiencies and distribution losses, less energy is required to operate an electric vehicle. Manufacturing batteries for electric cars requires additional resources and energy, so they may have a larger environmental footprint in the production phase. Electric vehicles also generate different impacts in their operation and maintenance. Electric vehicles are typically heavier and could produce more tire and road dust air pollution, but their regenerative braking could reduce such particulate pollution from brakes. Electric vehicles are mechanically simpler, which reduces the use and disposal of engine oil.
{{cite web}}
: CS1 maint: archived copy as title (link)