Eugène Charles Catalan

Last updated
Eugène Charles Catalan
Eugene charles catalan.jpg
Born(1814-05-30)30 May 1814
Bruges, Belgium
Died 14 February 1894(1894-02-14) (aged 79)
Liège, Belgium
Nationality French, Belgian
Alma mater Ecole Polytechnique
Known for Catalan's conjecture, Catalan numbers
Scientific career
Fields Mathematics
Doctoral advisor Joseph Liouville
Doctoral students François Deruyts
Charles Hermite
Constantin Le Paige

Eugène Charles Catalan (30 May 1814 – 14 February 1894) [1] was a French and Belgian mathematician who worked on continued fractions, descriptive geometry, number theory and combinatorics. His notable contributions included discovering a periodic minimal surface in the space ; stating the famous Catalan's conjecture, which was eventually proved in 2002; and, introducing the Catalan numbers to solve a combinatorial problem.

Belgium Federal constitutional monarchy in Western Europe

Belgium, officially the Kingdom of Belgium, is a country in Western Europe. It is bordered by the Netherlands to the north, Germany to the east, Luxembourg to the southeast, France to the southwest, and the North Sea to the northwest. It covers an area of 30,688 square kilometres (11,849 sq mi) and has a population of more than 11.4 million. The capital and largest city is Brussels; other major cities are Antwerp, Ghent, Charleroi and Liège.

In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction, the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers are called the coefficients or terms of the continued fraction.

Descriptive geometry branch of geometry which allows the representation of three-dimensional objects in two dimensions

Descriptive geometry is the branch of geometry which allows the representation of three-dimensional objects in two dimensions by using a specific set of procedures. The resulting techniques are important for engineering, architecture, design and in art. The theoretical basis for descriptive geometry is provided by planar geometric projections. The earliest known publication on the technique was "Underweysung der Messung mit dem Zirckel und Richtscheyt", published in Linien, Nuremberg: 1525, by Albrecht Dürer. Gaspard Monge is usually considered the "father of descriptive geometry" due to his developments in geometric problem solving. His first discoveries were in 1765 while he was working as a draftsman for military fortifications, although his findings were published later on.

Contents

Biography

Catalan was born in Bruges (now in Belgium, then under Dutch rule even though the Kingdom of the Netherlands had not yet been formally instituted), the only child of a French jeweller by the name of Joseph Catalan, in 1814. In 1825, he traveled to Paris and learned mathematics at École Polytechnique, where he met Joseph Liouville (1833). In December 1834 he was expelled along with most of the students in his year for political reasons; [2] he resumed his studies in January 1835, graduated that summer, and went on to teach at Châlons-sur-Marne. Catalan came back to the École Polytechnique, and, with the help of Liouville, obtained his degree in mathematics in 1841. He went on to Charlemagne College to teach descriptive geometry. Though he was politically active and strongly left-wing, leading him to participate in the 1848 Revolution, he had an animated career and also sat in the France's Chamber of Deputies. Later, in 1849, Catalan was visited at his home by the French Police, searching for illicit teaching material; however, none was found.

Bruges Municipality in Flemish Community, Belgium

Bruges is the capital and largest city of the province of West Flanders in the Flemish Region of Belgium, in the northwest of the country.

Kingdom of the Netherlands Kingdom in Europe and the Caribbean

The Kingdom of the Netherlands, commonly known as the Netherlands, is a sovereign state and constitutional monarchy with the large majority of its territory in Western Europe and with several small island territories in the Caribbean Sea, in the West Indies islands.

École Polytechnique French institution of higher education and research in Palaiseau

École polytechnique is a French public institution of higher education and research in Palaiseau, a suburb southwest of Paris. It is one of the most prestigious and selective French scientific and engineering schools, called grandes écoles in French. It is known for its ingénieur polytechnicien scientific degree program which is equivalent to both a bachelor and master of science. Its entrance exam, the X-ENS exam, is renowned for its selectivity with a little over 500 admitted students out of the 53 848 students enrolled in the preparatory programs for the French scientific and engineering schools entrance exams.

The University of Liège appointed him chair of analysis in 1865. In 1879, still in Belgium, he became journal editor where he published as a foot note Paul-Jean Busschop's theory after refusing it in 1873 - letting Busschop know that it was too empirical. In 1883, he worked for the Belgian Academy of Science in the field of number theory. He died in Liège, Belgium where he had received a chair.

University of Liège Belgian university

The University of Liège (ULiège), in Liège, Wallonia, Belgium, is a major public university in the French Community of Belgium. Its official language is French. As of 2016, ULiège is ranked in the #251–300 category worldwide according to Times Higher Education, 265nd by QS World University Rankings, and between the 205th and 300th place by the Academic Ranking of World Universities. More than 2000 people, academics, scientists and technicians, are involved in research of a wide variety of subjects from basic research to applied research.

Work

He worked on continued fractions, descriptive geometry, number theory and combinatorics. He gave his name to a unique surface (periodic minimal surface in the space ) that he discovered in 1855. Before that, he had stated the famous Catalan's conjecture, which was published in 1844 and was eventually proved in 2002, by the Romanian mathematician Preda Mihăilescu. He introduced the Catalan numbers to solve a combinatorial problem.

Number theory branch of pure mathematics devoted primarily to the study of the integers

Number theory is a branch of pure mathematics devoted primarily to the study of the integers. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of objects made out of integers or defined as generalizations of the integers.

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics, from evolutionary biology to computer science, etc.

Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu. The integers 23 and 32 are two powers of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the only case of two consecutive powers. That is to say, that the only solution in the natural numbers of

Selected publications

See also

Catalan solid polyhedron

In mathematics, a Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid. There are 13 Catalan solids. They are named for the Belgian mathematician, Eugène Catalan, who first described them in 1865.

Cassini's identity and Catalan's identity are mathematical identities for the Fibonacci numbers. The former is a special case of the latter, and states that for the nth Fibonacci number,

Fibonacci number integer in the infinite Fibonacci sequence

In mathematics, the Fibonacci numbers, commonly denoted Fn form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,

Related Research Articles

Jean Claude Eugène Péclet French physicist

Jean Claude Eugène Péclet was a French physicist.

Marin Mersenne French theologian, philosopher, mathematician and music theorist, often referred to as the "father of acoustics"

Marin Mersenne, Marin Mersennus or le PèreMersenne was a French polymath, whose works touched a wide variety of fields. He is perhaps best known today among mathematicians for Mersenne prime numbers, those which can be written in the form Mn = 2n − 1 for some integer n. He also developed Mersenne's laws, which describe the harmonics of a vibrating string, and his seminal work on music theory, Harmonie universelle, for which he is referred to as the "father of acoustics". Mersenne, an ordained priest, had many contacts in the scientific world and has been called "the center of the world of science and mathematics during the first half of the 1600s" and, because of his ability to make connections between people and ideas, "the post-box of Europe". He was also a member of the Minim religious order and wrote and lectured on theology and philosophy.

Gaspard Monge French mathematician, inventor of descriptive geometry and father of differential geometry

Gaspard Monge, Comte de Péluse was a French mathematician, the inventor of descriptive geometry, and the father of differential geometry. During the French Revolution he served as the Minister of the Marine, and was involved in the reform of the French educational system, helping to found the École Polytechnique.

Jacques Hadamard French mathematician

Jacques Salomon Hadamard ForMemRS was a French mathematician who made major contributions in number theory, complex function theory, differential geometry and partial differential equations.

Joseph Liouville French mathematician

Joseph Liouville FRS FRSE FAS · was a French mathematician.

Pierre Ossian Bonnet French mathematician

Pierre Ossian Bonnet was a French mathematician. He made some important contributions to the differential geometry of surfaces, including the Gauss–Bonnet theorem.

Jean-Victor Poncelet French engineer and mathematician

Jean-Victor Poncelet was a French engineer and mathematician who served most notably as the Commanding General of the École Polytechnique. He is considered a reviver of projective geometry, and his work Traité des propriétés projectives des figures is considered the first definitive text on the subject since Gérard Desargues' work on it in the 17th century. He later wrote an introduction to it: Applications d’analyse et de géométrie.

Jean Dieudonné mathematician

Jean Alexandre Eugène Dieudonné was a French mathematician, notable for research in abstract algebra, algebraic geometry, and functional analysis, for close involvement with the Nicolas Bourbaki pseudonymous group and the Éléments de géométrie algébrique project of Alexander Grothendieck, and as a historian of mathematics, particularly in the fields of functional analysis and algebraic topology. His work on the classical groups, and on formal groups, introducing what now are called Dieudonné modules, had a major effect on those fields.

Ernest Vessiot French mathematician

Ernest Vessiot was a French mathematician. He was born in Marseille, France and died in La Bauche, Savoie, France. He entered the École Normale Supérieure in 1884.

Jean Nicolas Pierre Hachette French mathematician

Jean Nicolas Pierre Hachette, French mathematician, was born at Mézières, where his father was a bookseller.

Michel Chasles French mathematician

Michel Floréal Chasles was a French mathematician.

Sylvestre François Lacroix French mathematician

Sylvestre François Lacroix was a French mathematician.

Joseph Jean Baptiste Neuberg mathematician

Joseph Jean Baptiste Neuberg was a Luxembourger mathematician who worked primarily in geometry.

János Pach American mathematician

János Pach is a mathematician and computer scientist working in the fields of combinatorics and discrete and computational geometry.

Raoul Bricard was a French engineer and a mathematician. He is best known for his work in geometry, especially descriptive geometry and scissors congruence, and kinematics, especially mechanical linkages.

Charles Hermite French mathematician

Charles Hermite FRS FRSE MIAS was a French mathematician who did research concerning number theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra.

Eugène Rouché was a French mathematician.

Louis Puissant mathematician

Louis Puissant was a French topographical engineer, geodesist, and mathematician.

Paul Jean Joseph Barbarin was a French mathematician, specializing in geometry.

Jean-Benoît Bost French mathematician

Jean-Benoît Bost is a French mathematician.

References