Extreme response spectrum

Last updated

The Extreme Response Spectrum (ERS) (or Maximum Response Spectrum (MRS)) is defined as a curve giving the value of the highest peak of the response of a linear Single Degree of Freedom System (SDOF system) to vibration, according to its natural frequency, for a given damping ratio. The response is described here by the relative movement of the mass of this system in relation to its support. The x-axis refers to the natural frequency and the y-axis to the highest peak multiplied by the square of the quantity (2 π x natural frequency), by analogy with the relative displacement shock response spectrum.

Fundamental frequency Lowest frequency of a periodic waveform, such as sound

The fundamental frequency, often referred to simply as the fundamental, is defined as the lowest frequency of a periodic waveform. In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present. In terms of a superposition of sinusoids, the fundamental frequency is the lowest frequency sinusoidal in the sum. In some contexts, the fundamental is usually abbreviated as f0, indicating the lowest frequency counting from zero. In other contexts, it is more common to abbreviate it as f1, the first harmonic.

Since the fundamental is the lowest frequency and is also perceived as the loudest, the ear identifies it as the specific pitch of the musical tone [harmonic spectrum]....The individual partials are not heard separately but are blended together by the ear into a single tone.

Damping is an influence within or upon an oscillatory system that has the effect of reducing, restricting or preventing its oscillations. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples include viscous drag in mechanical systems, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes.

Kinematics is a branch of classical mechanics that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that caused the motion. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

The severity of a vibration can be evaluated by calculating the stresses on a mathematical or finite element model of the structure and, for example, comparison with the ultimate stress of the material. This is the method used to dimension the structure. Generally, however, the problem is instead to evaluate the relative severity of several vibrations (vibrations measured in the real environment, measured vibrations with respect to standards, establishment of a specification etc.). This comparison would be difficult to carry out if one used a fine model of the structure and besides, this is not always available, in particular at the stage of the development of the specification of dimensioning.

A solution consists of applying the vibration under consideration to a “standard” mechanical system, which thus does not claim to be a model of the real structure, composed of a support and N linear one-degree-of-freedom resonators, each one comprising a mass, a spring and a damping device.

A vibration A is considered as more severe than a vibration B if it produces a highest relative displacement (i.e. a highest stress) on this SDOF system than the vibration B.

An ERS is generated from a vibration signal using the following process:
1. Choose a damping ratio for the ERS to be based on;
2. Assume a hypothetical Single Degree of Freedom System, with a given natural frequency (Hz);
3. Calculate (by time base simulation or from a Power Spectral Density (PSD) of the vibratory signal) the highest instantaneous relative displacement experienced by the mass element of this SDOFs at any time during exposure to the vibration in question. Plot this value multiplied by the square of (2 π x natural frequency) against the natural frequency of the hypothetical system;
4. Repeat steps 2 and 3 for other values of the natural frequency.

Spectral density Relative importance of certain frequencies in a composite signal

The power spectrum of a time series describes the distribution of power into frequency components composing that signal. According to Fourier analysis, any physical signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies over a continuous range. The statistical average of a certain signal or sort of signal as analyzed in terms of its frequency content, is called its spectrum.

The resulting plot is called an Extreme response spectrum .

Response spectrum

A response spectrum is a plot of the peak or steady-state response of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock. The resulting plot can then be used to pick off the response of any linear system, given its natural frequency of oscillation. One such use is in assessing the peak response of buildings to earthquakes. The science of strong ground motion may use some values from the ground response spectrum for correlation with seismic damage.

Note

Vibrations can damage a mechanical system as a result of several processes, among which are:

The yield point is the point on a stress–strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Yield strength or yield stress is the material property defined as the stress at which a material begins to deform plastically whereas yield point is the point where nonlinear deformation begins. Prior to the yield point the material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible.

ERS is used according to the first criterion. The second is considered with the fatigue damage spectrum (FDS).

The Fatigue Damage Spectrum (FDS) of a vibration is obtained by tracing the fatigue damage experienced by a linear Single Degree of Freedom System (SDOF) according to its natural frequency, for given damping ratio and for a given value of parameter b.

Related Research Articles

Resonance phenomenon in which a vibrating system or external force drives another system to oscillate with greater amplitude at specific frequencies

In mechanical systems, resonance is a phenomenon that occurs when the frequency at which a force is periodically applied is equal or nearly equal to one of the natural frequencies of the system on which it acts. This causes the system to oscillate with larger amplitude than when the force is applied at other frequencies.

<i>Q</i> factor

In physics and engineering the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is, and characterizes a resonator's bandwidth relative to its centre frequency. Higher Q indicates a lower rate of energy loss relative to the stored energy of the resonator; the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.

Tuned mass damper

A tuned mass damper (TMD), also known as a harmonic absorber or seismic damper, is a device mounted in structures to reduce the amplitude of mechanical vibrations. Their application can prevent discomfort, damage, or outright structural failure. They are frequently used in power transmission, automobiles, and buildings.

Seismic analysis Analysis of the response of a building or nonbuildung structure to earthquakes.

Seismic analysis is a subset of structural analysis and is the calculation of the response of a building structure to earthquakes. It is part of the process of structural design, earthquake engineering or structural assessment and retrofit in regions where earthquakes are prevalent.

Shock response spectrum

A Shock Response Spectrum (SRS) is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak acceleration which this SDOF would undergo as a consequence of the shock input.

Stockbridge damper tuned mass damper used to suppress wind-induced vibrations especially on overhead power lines

A Stockbridge damper is a tuned mass damper used to suppress wind-induced vibrations on slender structures such as overhead power lines and long cantilevered signs. The dumbbell-shaped device consists of two masses at the ends of a short length of cable or flexible rod, which is clamped at its middle to the main cable. The damper is designed to dissipate the energy of oscillations in the main cable to an acceptable level.

Mechanical resonance tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the systems natural frequency of vibration (its resonance frequency or resonant frequency) than it does at other frequencies

Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration than it does at other frequencies. It may cause violent swaying motions and even catastrophic failure in improperly constructed structures including bridges, buildings and airplanes. This is a phenomenon known as resonance disaster.

Vibration isolation is the process of isolating an object, such as a piece of equipment, from the source of vibrations.

Structural analysis is mainly concerned with finding out the behavior of a physical structure when subjected to force. This action can be in the form of load due to the weight of things such as people, furniture, wind, snow, etc. or some other kind of excitation such as an earthquake, shaking of the ground due to a blast nearby, etc. In essence all these loads are dynamic, including the self-weight of the structure because at some point in time these loads were not there. The distinction is made between the dynamic and the static analysis on the basis of whether the applied action has enough acceleration in comparison to the structure's natural frequency. If a load is applied sufficiently slowly, the inertia forces can be ignored and the analysis can be simplified as static analysis. Structural dynamics, therefore, is a type of structural analysis which covers the behavior of structures subjected to dynamic loading. Dynamic loads include people, wind, waves, traffic, earthquakes, and blasts. Any structure can be subjected to dynamic loading. Dynamic analysis can be used to find dynamic displacements, time history, and modal analysis.

Random vibration

In mechanical engineering, random vibration is motion which is non-deterministic, meaning that future behavior cannot be precisely predicted. The randomness is a characteristic of the excitation or input, not the mode shapes or natural frequencies. Some common examples include an automobile riding on a rough road, wave height on the water, or the load induced on an airplane wing during flight. Structural response to random vibration is usually treated using statistical or probabilistic approaches. In mathematical terms, random vibration is characterized as an ergodic and stationary process.

A mechanical amplifier, or a mechanical amplifying element, is a linkage mechanism that amplifies the magnitude of mechanical quantities such as force, displacement, velocity, acceleration and torque in linear and rotational systems. In some applications, mechanical amplification induced by nature or unintentional oversights in man-made designs can be disastrous. When employed appropriately, it can help to magnify small mechanical signals for practical applications.

Coulomb damping is a type of constant mechanical damping in which energy is absorbed via sliding friction. The friction generated by the relative motion of the two surfaces that press against each other is a source of energy dissipation. In general, damping is the dissipation of energy from a vibrating system where the kinetic energy is converted into heat by the friction. Coulomb damping is a common damping mechanism that occurs in machinery.

The impulse excitation technique (IET) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. It measures the resonant frequencies in order to calculate the Young's modulus, shear modulus, Poisson's ratio and internal friction of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures under different atmospheres.

Vibration mechanical phenomenon whereby oscillations occur about an equilibrium point; precisely used to describe mechanical oscillation

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin vibrationem. The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road.

Harmonic damper

A harmonic damper is a device fitted to the free end of the crankshaft of an internal combustion engine to counter torsional and resonance vibrations from the crankshaft. This device must be interference fit to the crankshaft in order to operate in an effective manner. An interference fit ensures the device moves in perfect step with crankshaft. It is essential on engines with long crankshafts and V8 engines with cross plane cranks. Harmonics and torsional vibrations can greatly reduce crankshaft life, or cause instantaneous failure if the crankshaft runs at or through an amplified resonance. Dampers are designed with a specific weight (mass) which is dependent on the damping material/method used and the freedom it affords the mass move allowing to reduce mechanical Q factor, or damp, crankshaft resonances. A harmonic balancer is the same thing as a harmonic damper except that the balancer includes a counterweight to externally balance the rotating assembly. The harmonic balancer often serves as a pulley for the accessory drive belts turning the alternator, water pump and other crankshaft driven devices.

The Eigensystem realization algorithm (ERA) is a system identification technique popular in civil engineering, in particular in structural health monitoring. ERA can be used as a modal analysis technique and generates a system realization using the time domain response (multi-)input and (multi-)output data. The ERA was proposed by Juang and Pappa and has been used for system identification of aerospace structures such as the Galileo spacecraft, turbines, civil structures and many other type of systems.

Vibration fatigue is a mechanical engineering term describing material fatigue, caused by forced vibration of random nature. An excited structure responds according to its natural-dynamics modes, which results in a dynamic stress load in the material points. The process of material fatigue is thus governed largely by the shape of the excitation profile and the response it produces. As the profiles of excitation and response are preferably analyzed in the frequency domain it is practical to use fatigue life evaluation methods, that can operate on the data in frequency-domain, such as power spectral density (PSD).

References