Eye (cyclone)

Last updated
An image of Hurricane Isabel as seen from the International Space Station showing a well-defined eye at the center of the storm. Hurricane Isabel from ISS.jpg
An image of Hurricane Isabel as seen from the International Space Station showing a well-defined eye at the center of the storm.

The eye is a region of mostly calm weather at the center of strong tropical cyclones. The eye of a storm is a roughly circular area, typically 30–65 km (20–40 miles) in diameter. It is surrounded by the eyewall, a ring of towering thunderstorms where the most severe weather and highest winds occur. The cyclone's lowest barometric pressure occurs in the eye and can be as much as 15 percent lower than the pressure outside the storm. [1]

Tropical cyclone Is a rotating storm system

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, and simply cyclone. A hurricane is a tropical cyclone that occurs in the Atlantic Ocean and northeastern Pacific Ocean, and a typhoon occurs in the northwestern Pacific Ocean; in the south Pacific or Indian Ocean, comparable storms are referred to simply as "tropical cyclones" or "severe cyclonic storms".

Contents

In strong tropical cyclones, the eye is characterized by light winds and clear skies, surrounded on all sides by a towering, symmetric eyewall. In weaker tropical cyclones, the eye is less well defined and can be covered by the central dense overcast, an area of high, thick clouds that show up brightly on satellite imagery. Weaker or disorganized storms may also feature an eyewall that does not completely encircle the eye or have an eye that features heavy rain. In all storms, however, the eye is the location of the storm's minimum barometric pressure—where the atmospheric pressure at sea level is the lowest. [1] [2]

Central dense overcast

The central dense overcast, or CDO, of a tropical cyclone or strong subtropical cyclone is the large central area of thunderstorms surrounding its circulation center, caused by the formation of its eyewall. It can be round, angular, oval, or irregular in shape. This feature shows up in tropical cyclones of tropical storm or hurricane strength. How far the center is embedded within the CDO, and the temperature difference between the cloud tops within the CDO and the cyclone's eye, can help determine a tropical cyclone's intensity. Locating the center within the CDO can be a problem for strong tropical storms and with systems of minimal hurricane strength as its location can be obscured by the CDO's high cloud canopy. This center location problem can be resolved through the use of microwave satellite imagery.

Weather satellite type of satellite

The weather satellite is a type of satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting, covering the entire Earth asynchronously, or geostationary, hovering over the same spot on the equator.

Structure

A cross section diagram of a mature tropical cyclone, with arrows indicating air flow in and around the eye Hurricane-en.svg
A cross section diagram of a mature tropical cyclone, with arrows indicating air flow in and around the eye

A typical tropical cyclone will have an eye of approximately 30–65 km (20–40 mi) across, usually situated at the geometric center of the storm. The eye may be clear or have spotty low clouds (a clear eye), it may be filled with low- and mid-level clouds (a filled eye), or it may be obscured by the central dense overcast. There is, however, very little wind and rain, especially near the center. This is in stark contrast to conditions in the eyewall, which contains the storm's strongest winds. [3] Due to the mechanics of a tropical cyclone, the eye and the air directly above it are warmer than their surroundings. [4]

While normally quite symmetric, eyes can be oblong and irregular, especially in weakening storms. A large ragged eye is a non-circular eye which appears fragmented, and is an indicator of a weak or weakening tropical cyclone. An open eye is an eye which can be circular, but the eyewall does not completely encircle the eye, also indicating a weakening, moisture-deprived cyclone. Both of these observations are used to estimate the intensity of tropical cyclones via Dvorak analysis. [5] Eyewalls are typically circular; however, distinctly polygonal shapes ranging from triangles to hexagons occasionally occur. [6]

Dvorak technique

The Dvorak technique is a widely used system to estimate tropical cyclone intensity based solely on visible and infrared satellite images. Within the Dvorak satellite strength estimate for tropical cyclones, there are several visual patterns that a cyclone may take on which define the upper and lower bounds on its intensity. The primary patterns used are curved band pattern (T1.0-T4.5), shear pattern (T1.5–T3.5), central dense overcast (CDO) pattern (T2.5–T5.0), central cold cover (CCC) pattern, banding eye pattern (T4.0–T4.5), and eye pattern (T4.5–T8.0).

While typical mature storms have eyes that are a few dozen miles across, rapidly intensifying storms can develop an extremely small, clear, and circular eye, sometimes referred to as a pinhole eye. Storms with pinhole eyes are prone to large fluctuations in intensity, and provide difficulties and frustrations for forecasters. [7]

Small/minuscule eyes—those less than 10  nmi (19 km, 12 mi) across—often trigger eyewall replacement cycles, where a new eyewall begins to form outside the original eyewall. This can take place anywhere from fifteen to hundreds of kilometers (ten to a few hundred miles) outside the inner eye. The storm then develops two concentric eyewalls, or an "eye within an eye". In most cases, the outer eyewall begins to contract soon after its formation, which chokes off the inner eye and leaves a much larger but more stable eye. While the replacement cycle tends to weaken storms as it occurs, the new eyewall can contract fairly quickly after the old eyewall dissipates, allowing the storm to re-strengthen. This may trigger another re-strengthen cycle of eyewall replacement. [8]

Nautical mile unit of distance (1852 m)

A nautical mile is a unit of measurement used in both air and marine navigation, and for the definition of territorial waters. Historically, it was defined as one minute of a degree of latitude. Today it is defined as exactly 1852 metres. The derived unit of speed is the knot, one nautical mile per hour.

Eyes can range in size from 370 km (230 mi) (Typhoon Carmen) [9] to a mere 3.7 km (2.3 mi) (Hurricane Wilma) across. [10] While it is uncommon for storms with large eyes to become very intense, it does occur, especially in annular hurricanes. Hurricane Isabel was the eleventh most powerful North Atlantic hurricane in recorded history, and sustained a large, 65–80 km (40–50 mi)-wide eye for a period of several days. [11]

Formation and detection

Tropical cyclones form when the energy released by the condensation of moisture in rising air causes a positive feedback loop over warm ocean waters. Hurricane-profile-en.svg
Tropical cyclones form when the energy released by the condensation of moisture in rising air causes a positive feedback loop over warm ocean waters.
Typically, eyes are easy to spot using weather radar. This radar image of Hurricane Andrew clearly shows the eye over southern Florida. HurricaneAndrewFLRADAR.png
Typically, eyes are easy to spot using weather radar. This radar image of Hurricane Andrew clearly shows the eye over southern Florida.

Tropical cyclones typically form from large, disorganized areas of disturbed weather in tropical regions. As more thunderstorms form and gather, the storm develops rainbands which start rotating around a common center. As the storm gains strength, a ring of stronger convection forms at a certain distance from the rotational center of the developing storm. Since stronger thunderstorms and heavier rain mark areas of stronger updrafts, the barometric pressure at the surface begins to drop, and air begins to build up in the upper levels of the cyclone. [12] This results in the formation of an upper level anticyclone, or an area of high atmospheric pressure above the central dense overcast. Consequently, most of this built up air flows outward anticyclonically above the tropical cyclone. Outside the forming eye, the anticyclone at the upper levels of the atmosphere enhances the flow towards the center of the cyclone, pushing air towards the eyewall and causing a positive feedback loop. [12]

However, a small portion of the built-up air, instead of flowing outward, flows inward towards the center of the storm. This causes air pressure to build even further, to the point where the weight of the air counteracts the strength of the updrafts in the center of the storm. Air begins to descend in the center of the storm, creating a mostly rain-free areaa newly formed eye. [12]

There are many aspects of this process which remain a mystery. Scientists do not know why a ring of convection forms around the center of circulation instead of on top of it, or why the upper-level anticyclone only ejects a portion of the excess air above the storm. Many theories exist as to the exact process by which the eye forms: all that is known for sure is that the eye is necessary for tropical cyclones to achieve high wind speeds. [12]

The formation of an eye is almost always an indicator of increasing tropical cyclone organisation and strength. Because of this, forecasters watch developing storms closely for signs of eye formation.

For storms with a clear eye, detection of the eye is as simple as looking at pictures from a weather satellite. However, for storms with a filled eye, or an eye completely covered by the central dense overcast, other detection methods must be used. Observations from ships and Hurricane Hunters can pinpoint an eye visually, by looking for a drop in wind speed or lack of rainfall in the storm's center. In the United States, South Korea, and a few other countries, a network of NEXRAD Doppler weather radar stations can detect eyes near the coast. Weather satellites also carry equipment for measuring atmospheric water vapor and cloud temperatures, which can be used to spot a forming eye. In addition, scientists have recently discovered that the amount of ozone in the eye is much higher than the amount in the eyewall, due to air sinking from the ozone-rich stratosphere. Instruments sensitive to ozone perform measurements, which are used to observe rising and sinking columns of air, and provide indication of the formation of an eye, even before satellite imagery can determine its formation. [13]

One satellite study found eyes detected on average for 30 hours per storm. [14]

Associated phenomena

A satellite photo of Typhoon Amber of the 1997 Pacific typhoon season exhibiting an outer and inner eyewall, while undergoing an eyewall replacement cycle Typhoon amber concentric eyewalls.gif
A satellite photo of Typhoon Amber of the 1997 Pacific typhoon season exhibiting an outer and inner eyewall, while undergoing an eyewall replacement cycle

Eyewall replacement cycles

Eyewall replacement cycles, also called concentric eyewall cycles, naturally occur in intense tropical cyclones, generally with winds greater than 185 km/h (115 mph), or major hurricanes (Category 3 or higher on the Saffir–Simpson hurricane scale). When tropical cyclones reach this intensity, and the eyewall contracts or is already sufficiently small (see above), some of the outer rainbands may strengthen and organize into a ring of thunderstorms—an outer eyewall—that slowly moves inward and robs the inner eyewall of its needed moisture and angular momentum. Since the strongest winds are located in a cyclone's eyewall, the tropical cyclone usually weakens during this phase, as the inner wall is "choked" by the outer wall. Eventually the outer eyewall replaces the inner one completely, and the storm can re-intensify. [8]

The discovery of this process was partially responsible for the end of the U.S. government's hurricane modification experiment Project Stormfury. This project set out to seed clouds outside the eyewall, causing a new eyewall to form and weakening the storm. When it was discovered that this was a natural process due to hurricane dynamics, the project was quickly abandoned. [8]

Almost every intense hurricane undergoes at least one of these cycles during its existence. Hurricane Allen in 1980 went through repeated eyewall replacement cycles, fluctuating between Category 5 and Category 3 status on the Saffir-Simpson scale several times. Hurricane Juliette was a rare documented case of triple eyewalls. [15]

Moats

A moat in a tropical cyclone is a clear ring outside the eyewall, or between concentric eyewalls, characterized by subsidence slowly sinking airand little or no precipitation. The air flow in the moat is dominated by the cumulative effects of stretching and shearing. The moat between eyewalls is an area in the storm where the rotational speed of the air changes greatly in proportion to the distance from the storm's center; these areas are also known as rapid filamentation zones. Such areas can potentially be found near any vortex of sufficient strength, but are most pronounced in strong tropical cyclones. [16]

Eyewall mesovortices

Mesovortices visible in the eye of Hurricane Emilia in 1994. Hurricane emilia (1994) eye close-up.jpg
Mesovortices visible in the eye of Hurricane Emilia in 1994.

Eyewall mesovortices are small scale rotational features found in the eyewalls of intense tropical cyclones. They are similar, in principle, to small "suction vortices" often observed in multiple-vortex tornadoes. [17] In these vortices, wind speeds may be greater than anywhere else in the eyewall. [18] Eyewall mesovortices are most common during periods of intensification in tropical cyclones. [17]

Eyewall mesovortices often exhibit unusual behavior in tropical cyclones. They usually rotate around the low pressure center, but sometimes they remain stationary. Eyewall mesovortices have even been documented to cross the eye of a storm. These phenomena have been documented observationally, [19] experimentally, [17] and theoretically. [20]

Eyewall mesovortices are a significant factor in the formation of tornadoes after tropical cyclone landfall. Mesovortices can spawn rotation in individual convective cells or updrafts (a mesocyclone), which leads to tornadic activity. At landfall, friction is generated between the circulation of the tropical cyclone and land. This can allow the mesovortices to descend to the surface, causing tornadoes. [21] These tornadic circulations in the boundary layer may be prevalent in the inner eyewalls of intense tropical cyclones but with short duration and small size they are not frequently observed. [22]

Stadium effect

View of Typhoon Maysak's eye from the International Space Station on March 31, 2015, displaying a pronounced stadium effect. Maysak seen from the ISS 3.jpg
View of Typhoon Maysak's eye from the International Space Station on March 31, 2015, displaying a pronounced stadium effect.

The stadium effect is a phenomenon observed in strong tropical cyclones. It is a fairly common event, where the clouds of the eyewall curve outward from the surface with height. This gives the eye an appearance resembling an open dome from the air, akin to a sports stadium. An eye is always larger at the top of the storm, and smallest at the bottom of the storm because the rising air in the eyewall follows isolines of equal angular momentum, which also slope outward with height. [23] [24] [25] In tropical cyclones with very small eyes, the sloping phenomenon is much more pronounced.

Eye-like features

An eye-like structure is often found in intensifying tropical cyclones. Similar to the eye seen in hurricanes or typhoons, it is a circular area at the circulation center of the storm in which convection is absent. These eye-like features are most normally found in intensifying tropical storms and hurricanes of Category 1 strength on the Saffir-Simpson scale. For example, an eye-like feature was found in Hurricane Beta when the storm had maximum wind speeds of only 80 km/h (50 mph), well below hurricane force. [26] The features are typically not visible on visible wavelengths or infrared wavelengths from space, although they are easily seen on microwave satellite imagery. [27] Their development at the middle levels of the atmosphere is similar to the formation of a complete eye, but the features might be horizontally displaced due to vertical wind shear. [28] [29]

Hazards

An aircraft flying through a storm's eyewall and into the calm eye

Though the eye is by far the calmest part of the storm, with no wind at the center and typically clear skies, over the ocean it is possibly the most hazardous area. In the eyewall, wind-driven waves all travel in the same direction. In the center of the eye, however, the waves converge from all directions, creating erratic crests that can build on each other to become rogue waves. The maximum height of hurricane waves is unknown, but measurements during Hurricane Ivan when it was a Category 4 hurricane estimated that waves near the eyewall exceeded 40 m (130 ft) from peak to trough. [30]

A common mistake, especially in areas where hurricanes are uncommon, is for residents to exit their homes to inspect the damage while the calm eye passes over, only to be caught off guard by the violent winds in the opposite eyewall. [31]

Other cyclones

The North American blizzard of 2006, an extratropical storm, showed an eye-like structure at its peak intensity (here seen just to the east of the Delmarva Peninsula). GreatBlizzardof2006.jpg
The North American blizzard of 2006, an extratropical storm, showed an eye-like structure at its peak intensity (here seen just to the east of the Delmarva Peninsula).

Though only tropical cyclones have structures officially termed "eyes", there are other weather systems that can exhibit eye-like features. [1] [32]

Polar lows

Polar lows are mesoscale weather systems, typically smaller than 1,000 km (600 mi) across, found near the poles. Like tropical cyclones, they form over relatively warm water and can feature deep convection and winds of gale force or greater. Unlike storms of tropical nature, however, they thrive in much colder temperatures and at much higher latitudes. They are also smaller and last for shorter durations, with few lasting longer than a day or so. Despite these differences, they can be very similar in structure to tropical cyclones, featuring a clear eye surrounded by an eyewall and bands of rain and snow. [33]

Extratropical cyclones

Extratropical cyclones are areas of low pressure which exist at the boundary of different air masses. Almost all storms found at mid-latitudes are extratropical in nature, including classic North American nor'easters and European windstorms. The most severe of these can have a clear "eye" at the site of lowest barometric pressure, though it is usually surrounded by lower, non-convective clouds and is found near the back end of the storm. [34]

Subtropical cyclones

Subtropical cyclones are low-pressure systems with some extratropical characteristics and some tropical characteristics. As such, they may have an eye while not being truly tropical in nature. Subtropical cyclones can be very hazardous, generating high winds and seas, and often evolve into fully tropical cyclones. For this reason, the National Hurricane Center began including subtropical storms in its naming scheme in 2002. [35]

Tornadoes

Tornadoes are destructive, small-scale storms, which produce the fastest winds on earth. There are two main types—single-vortex tornadoes, which consist of a single spinning column of air, and multiple-vortex tornadoes, which consist of small "suction vortices," resembling mini-tornadoes themselves, all rotating around a common center. Both of these types of tornadoes are theorized to have calm eyes. These theories are supported by doppler velocity observations by weather radar and eyewitness accounts. [36] [37]

Extraterrestrial vortices

A hurricane-like storm on the south pole of Saturn displaying an eyewall tens of kilometers high PIA08333 Saturn storm.jpg
A hurricane-like storm on the south pole of Saturn displaying an eyewall tens of kilometers high

NASA reported in November 2006 that the Cassini spacecraft observed a "hurricane-like" storm locked to the south pole of Saturn with a clearly defined eyewall. The observation was particularly notable as eyewall clouds had not previously been seen on any planet other than Earth (including a failure to observe an eyewall in the Great Red Spot of Jupiter by the Galileo spacecraft). [38] In 2007, very large vortices on both poles of Venus were observed by the Venus Express mission of the European Space Agency to have a dipole eye structure. [39]

See also

Related Research Articles

Cyclone large scale air mass that rotates around a strong center of low pressure

In meteorology, a cyclone is a large scale air mass that rotates around a strong center of low atmospheric pressure. Cyclones are characterized by inward spiraling winds that rotate about a zone of low pressure. The largest low-pressure systems are polar vortices and extratropical cyclones of the largest scale. Warm-core cyclones such as tropical cyclones and subtropical cyclones also lie within the synoptic scale. Mesocyclones, tornadoes and dust devils lie within smaller mesoscale. Upper level cyclones can exist without the presence of a surface low, and can pinch off from the base of the tropical upper tropospheric trough during the summer months in the Northern Hemisphere. Cyclones have also been seen on extraterrestrial planets, such as Mars and Neptune. Cyclogenesis is the process of cyclone formation and intensification. Extratropical cyclones begin as waves in large regions of enhanced mid-latitude temperature contrasts called baroclinic zones. These zones contract and form weather fronts as the cyclonic circulation closes and intensifies. Later in their life cycle, extratropical cyclones occlude as cold air masses undercut the warmer air and become cold core systems. A cyclone's track is guided over the course of its 2 to 6 day life cycle by the steering flow of the subtropical jet stream.

Low-pressure area region where the atmospheric pressure is lower than that of surrounding locations

A low-pressure area, low, depression or cyclone is a region on the topographic map where the atmospheric pressure is lower than that of surrounding locations. Low-pressure systems form under areas of wind divergence that occur in the upper levels of the troposphere. The formation process of a low-pressure area is known as cyclogenesis. Within the field of meteorology, atmospheric divergence aloft occurs in two areas. The first area is on the east side of upper troughs, which form half of a Rossby wave within the Westerlies. A second area of wind divergence aloft occurs ahead of embedded shortwave troughs, which are of smaller wavelength. Diverging winds aloft ahead of these troughs cause atmospheric lift within the troposphere below, which lowers surface pressures as upward motion partially counteracts the force of gravity.

Wall cloud cloud formation

A wall cloud is a large, localized, persistent, and often abrupt lowering of cloud that develops beneath the surrounding base of a cumulonimbus cloud and from which tornadoes sometimes form. It is typically beneath the rain-free base (RFB) portion of a thunderstorm, and indicates the area of the strongest updraft within a storm. Rotating wall clouds are an indication of a mesocyclone in a thunderstorm; most strong tornadoes form from these. Many wall clouds do rotate, however some do not.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

Rainband

A rainband is a cloud and precipitation structure associated with an area of rainfall which is significantly elongated. Rainbands can be stratiform or convective, and are generated by differences in temperature. When noted on weather radar imagery, this precipitation elongation is referred to as banded structure. Rainbands within tropical cyclones are curved in orientation. Tropical cyclone rainbands contain showers and thunderstorms that, together with the eyewall and the eye, constitute a hurricane or tropical storm. The extent of rainbands around a tropical cyclone can help determine the cyclone's intensity.

Mesoscale convective system complex of thunderstorms organized on a larger scale

A mesoscale convective system (MCS) is a complex of thunderstorms that becomes organized on a scale larger than the individual thunderstorms but smaller than extratropical cyclones, and normally persists for several hours or more. A mesoscale convective system's overall cloud and precipitation pattern may be round or linear in shape, and include weather systems such as tropical cyclones, squall lines, lake-effect snow events, polar lows, and Mesoscale Convective Complexes (MCCs), and generally form near weather fronts. The type that forms during the warm season over land has been noted across North America, Europe, and Asia, with a maximum in activity noted during the late afternoon and evening hours.

Annular tropical cyclone

An annular tropical cyclone is a tropical cyclone that features a normal to large, symmetric eye surrounded by a thick and uniform ring of intense convection, often having a relative lack of discrete rainbands, and bearing a symmetric appearance in general. As a result, the appearance of an annular tropical cyclone can be referred to as akin to a tire or doughnut. Annular characteristics can be attained as tropical cyclones intensify; however, outside the processes that drive the transition from asymmetric systems to annular systems and the abnormal resistance to negative environmental factors found in storms with annular features, annular tropical cyclones behave similarly to asymmetric storms. Most research related to annular tropical cyclones is limited to satellite imagery and aircraft reconnaissance as the conditions thought to give rise to annular characteristics normally occur over water well removed from landmasses where surface observations are possible.

Hot tower

A hot tower is a tropical cumulonimbus cloud that reaches out of the lowest layer of the atmosphere, the troposphere, and into the stratosphere. In the tropics, the border between the troposphere and stratosphere, the tropopause, typically lies at least 15 kilometres (9.3 mi) above sea level. These formations are called "hot" because of the large amount of latent heat released as water vapor condenses into liquid and freezes into ice. The presence of hot towers within the eyewall of a tropical cyclone can indicate possible future strengthening.

Rapid intensification

Rapid intensification is a meteorological condition that occurs when a tropical cyclone intensifies dramatically in a short period of time. The United States National Hurricane Center (NHC) defines rapid intensification as an increase in the maximum 1-min sustained winds of a tropical cyclone of at least 30 knots in a 24-hour period.

Tropical cyclogenesis

Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which temperate cyclogenesis occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant convection in a favorable atmospheric environment.

Tornadogenesis process by which a tornado forms

Tornadogenesis is the process by which a tornado forms. There are many types of tornadoes and these vary in methods of formation. Despite ongoing scientific study and high-profile research projects such as VORTEX, tornadogenesis is a volatile process and the intricacies of many of the mechanisms of tornado formation are still poorly understood.

Extratropical cyclone type of cyclone

Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical cyclones are capable of producing anything from cloudiness and mild showers to heavy gales, thunderstorms, blizzards, and tornadoes. These types of cyclones are defined as large scale (synoptic) low pressure weather systems that occur in the middle latitudes of the Earth. In contrast with tropical cyclones, extratropical cyclones produce rapid changes in temperature and dew point along broad lines, called weather fronts, about the center of the cyclone.

1975 Pacific Northwest hurricane Category 1 Pacific hurricane in 1975

The 1975 Pacific Northwest hurricane was an unusual Pacific tropical cyclone that attained hurricane status farther north than any other Pacific hurricane. It was officially unnamed, with the cargo ship Transcolorado providing vital meteorological data in assessing the storm. The twelfth tropical cyclone of the 1975 Pacific hurricane season, it developed from a cold-core upper-level low merging with the remnants of a tropical cyclone on August 31, well to the northeast of Hawaii. Convection increased as the circulation became better defined, and by early on September 2 it became a tropical storm. Turning to the northeast through an area of warm water temperatures, the storm quickly strengthened, and, after developing an eye, it attained hurricane status late on September 3, while located about 1,200 miles (1,950 km) south of Alaska. After maintaining peak winds for about 18 hours, the storm rapidly weakened, as it interacted with an approaching cold front. Early on September 5, it lost its identity near the coast of Alaska.

Mesovortices are small scale rotational features found in convective storms, such as those found in bow echos, supercell thunderstorms, and the eyewall of tropical cyclones. They range in size from tens of miles in diameter to a mile or less, and can be immensely intense.

Eyewall replacement cycle

Eyewall replacement cycles, also called concentric eyewall cycles, naturally occur in intense tropical cyclones, generally with winds greater than 185 km/h (115 mph), or major hurricanes. When tropical cyclones reach this intensity, and the eyewall contracts or is already sufficiently small, some of the outer rainbands may strengthen and organize into a ring of thunderstorms—an outer eyewall—that slowly moves inward and robs the inner eyewall of its needed moisture and angular momentum. Since the strongest winds are in a cyclone's eyewall, the tropical cyclone usually weakens during this phase, as the inner wall is "choked" by the outer wall. Eventually the outer eyewall replaces the inner one completely, and the storm may re-intensify.

Cold-core low cyclone aloft which has an associated cold pool of air residing at high altitude within the Earths troposphere

A cold-core low, also known as an upper level low or cold-core cyclone, is a cyclone aloft which has an associated cold pool of air residing at high altitude within the Earth's troposphere. It is a low pressure system that strengthens with height in accordance with the thermal wind relationship. If a weak surface circulation forms in response to such a feature at subtropical latitudes of the eastern north Pacific or north Indian oceans, it is called a subtropical cyclone. Cloud cover and rainfall mainly occurs with these systems during the day. Severe weather, such as tornadoes, can occur near the center of cold-core lows. Cold lows can help spawn cyclones with significant weather impacts, such as polar lows, and Kármán vortices. Cold lows can lead directly to the development of tropical cyclones, owing to their associated cold pool of air aloft or by acting as additional outflow channels to aid in further development.

The Hurricane Rainband and Intensity Change Experiment

The Hurricane Rainband and Intensity Change Experiment (RAINEX) is a project to improve hurricane intensity forecasting via measuring interactions between rainbands and the eyewalls of tropical cyclones. The experiment was planned for the 2005 Atlantic hurricane season. This coincidence of RAINEX with the 2005 Atlantic hurricane season led to the study and exploration of infamous hurricanes Katrina, Ophelia, and Rita. Where Hurricane Katrina and Hurricane Rita would go on to cause major damage to the US Gulf coast, Hurricane Ophelia provided an interesting contrast to these powerful cyclones as it never developed greater than a category 1.

References

  1. 1 2 3 Landsea, Chris; Goldenberg, Stan (2012-06-01). "A: Basic definitions". In Dorst, Neal. Frequently Asked Questions (FAQ). 4.5. Atlantic Oceanographic and Meteorological Laboratory. pp. A11: What is the 'eye'?. Archived from the original on 2006-06-15.
  2. Landsea, Chris; Goldenberg, Stan (2012-06-01). "A: Basic definitions". In Dorst, Neal. Frequently Asked Questions (FAQ). 4.5. Atlantic Oceanographic and Meteorological Laboratory. pp. A9: What is a "CDO"?. Archived from the original on 2006-06-15.
  3. Webmaster (2010-01-05). "Tropical Cyclone Structure". JetStream – Online School for Weather. National Weather Service. Retrieved 2006-12-14.
  4. Landsea, Chris; Goldenberg, Stan (2012-06-01). "A: Basic definitions". In Dorst, Neal. Frequently Asked Questions (FAQ). 4.5. Atlantic Oceanographic and Meteorological Laboratory. pp. A7: What is an extra-tropical cyclone?. Archived from the original on 2006-06-15.
  5. Velden, Christopher S.; Olander, Timothy L.; Zehr, Raymond M. (1998). "Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery". Weather and Forecasting. 13 (1): 172–173. Bibcode:1998WtFor..13..172V. CiteSeerX   10.1.1.531.6629 . doi:10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2.
  6. Schubert, Wayne H.; et al. (1999). "Polygonal Eyewalls, Asymmetric Eye Contraction, and Potential Vorticity Mixing in Hurricanes". Journal of the Atmospheric Sciences. 59 (9): 1197–1223. Bibcode:1999JAtS...56.1197S. CiteSeerX   10.1.1.454.871 . doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.
  7. Beven, Jack (2005-10-08). Hurricane Wilma Discussion Number 14 (Report). Hurricane Wilma Advisory Archive. National Hurricane Center. Retrieved 2013-05-06.
  8. 1 2 3 Landsea, Chris; Goldenberg, Stan (2012-06-01). "D: Tropical cyclone winds and energy". In Dorst, Neal. Frequently Asked Questions (FAQ). 4.5. Atlantic Oceanographic and Meteorological Laboratory. pp. D8: What are "concentric eyewall cycles" … ?. Archived from the original on 2006-06-15.
  9. Evans, Bill (2012-05-22). It's Raining Fish and Spiders. Hurricane Extremes: Google Ebooks. ISBN   9781429984829 . Retrieved 20 August 2015.
  10. A Dictionary of Weather. Weather Records: Storm Dunlop. 2008-08-14. ISBN   9780191580055 . Retrieved 20 August 2015.
  11. Beven, Jack; Cobb, Hugh (2003). Hurricane Isabel: 619 September 2003 (Tropical Cyclone Report). National Hurricane Center. Archived from the original on 14 November 2013. Retrieved 2013-05-06.
  12. 1 2 3 4 Vigh, Jonathan (2006). Formation of the Hurricane Eye (PDF). 27th Conference on Hurricanes and Tropical Meteorology. Monterey, California: American Meteorological Society. Retrieved 2013-05-07.
  13. Gutro, Rob (2005-06-08). "Ozone Levels Drop When Hurricanes Are Strengthening" (Press release). NASA. Archived from the original on 2012-11-05. Retrieved 2013-05-06.
  14. Knapp, Kenneth R.; C. S. Velden; A. J. Wimmers (2018). "A Global Climatology of Tropical Cyclone Eyes". Mon. Wea. Rev. 146 (7): 2089–2101. Bibcode:2018MWRv..146.2089K. doi:10.1175/MWR-D-17-0343.1.
  15. McNoldy, Brian D. (2004). "Triple Eyewall in Hurricane Juliette" (PDF). Bulletin of the American Meteorological Society. 85 (11): 1663–1666. Bibcode:2004BAMS...85.1663M. doi:10.1175/BAMS-85-11-1663.
  16. Rozoff, Christopher M.; Schubert, Wayne H.; McNoldy, Brian D.; Kossin, James P. (2006). "Rapid filamentation zones in intense tropical cyclones". Journal of the Atmospheric Sciences. 63 (1): 325–340. Bibcode:2006JAtS...63..325R. CiteSeerX   10.1.1.510.1034 . doi:10.1175/JAS3595.1.
  17. 1 2 3 Montgomery, Michael T.; Vladimirov, Vladimir A.; Denissenko, Peter V. (2002). "An experimental study on hurricane mesovortices" (PDF). Journal of Fluid Mechanics. 471 (1): 1–32. Bibcode:2002JFM...471....1M. doi:10.1017/S0022112002001647.
  18. Aberson, Sim D.; Black, Michael L.; Montgomery, Michael T.; Bell, Michael (2004). A Record Wind Measurement in Hurricane Isabel: Direct Evidence of an Eyewall Mesocyclone? (PDF). 26th Conference on Hurricanes and Tropical Meteorology. Miami, Florida: American Meteorological Society. Retrieved 2013-05-07.
  19. Kossin, James P.; McNoldy, Brian D.; Schubert, Wayne H. (2002). "Vortical swirls in hurricane eye clouds". Monthly Weather Review. 130 (12): 3144–3149. Bibcode:2002MWRv..130.3144K. doi:10.1175/1520-0493(2002)130<3144:VSIHEC>2.0.CO;2.
  20. Kossin, James. P.; Schubert, Wayne H. (2001). "Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices". Journal of the Atmospheric Sciences. 58 (15): 2196–2209. Bibcode:2001JAtS...58.2196K. doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.
  21. Wright, John E.; Bennett, Shawn P. (2009-01-16). "Meso-Vorticies Observed By WSR-88D In The Eye" (Press release). National Weather Service. Retrieved 2013-05-07.
  22. Wu, Liguang; Q. Liu; Y. Li (2018). "Prevalence of tornado-scale vortices in the tropical cyclone eyewall". Proc. Natl. Acad. Sci. U.S.A. 115 (33): 8307–8310. doi:10.1073/pnas.1807217115.
  23. Hawkins, Harry F.; Rubsam, Daryl T. (1968). "Hurricane Hilda, 1964: II. Structure and budgets of the hurricane on October 1, 1964". Monthly Weather Review. 96 (9): 617–636. Bibcode:1968MWRv...96..617H. doi:10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.
  24. Gray, W. M.; Shea, D. J. (1973). "The hurricane's inner core region: II. Thermal stability and dynamic characteristics". Journal of the Atmospheric Sciences. 30 (8): 1565–1576. Bibcode:1973JAtS...30.1565G. doi:10.1175/1520-0469(1973)030<1565:THICRI>2.0.CO;2.
  25. Hawkins, Harry F.; Imbembo, Stephen M. (1976). "The structure of a Small, Intense Hurricane—Inez 1966". Monthly Weather Review. 104 (4): 418–442. Bibcode:1976MWRv..104..418H. doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.
  26. Beven, John L. (2005-10-27). Tropical Storm Beta Discussion Number 3 (Report). Hurricane Beta Advisory Archive. National Hurricane Center. Retrieved 2013-05-07.
  27. Marks, Frank D.; Stewart, Stacy R. (2001). TRMM Satellite Data - Applications to Tropical Cyclone Analysis and Forecasting (PDF) (Presentation). TRMM Workshops. Boulder, Colorado: University Corporation for Atmospheric Research. pp. 7–25. Archived from the original (PDF) on 2014-01-22. Retrieved 2013-05-07.
  28. "STORM project" (Press release). National Weather Service. Retrieved 2008-03-12.
  29. Brown, Daniel; Roberts, Dave. "Interpretation of passive microwave imagery" (Press release). National Oceanic and Atmospheric Administration. Retrieved 2008-03-12.
  30. Wang, David W.; Mitchell, Douglas A.; Teague, William J.; Jarosz, Ewa; Hulbert, Mark S. (2005). "Extreme Waves Under Hurricane Ivan". Science. 309 (5736): 896. doi:10.1126/science.1112509. PMID   16081728.
  31. Webmaster (2010-01-05). "Tropical Cyclone Safety". JetStream – Online School for Weather. National Weather Service. Retrieved 2006-08-06.
  32. Glossary of Meteorology Archived 2012-02-11 at the Wayback Machine Archived 2012-02-11 at the Wayback Machine . American Meteorological Society. Accessed 2008-10-10.
  33. National Snow and Ice Data Center. "Polar Lows" . Retrieved 2007-01-24.
  34. Maue, Ryan N. (2006-04-25). "Warm seclusion cyclone climatology". American Meteorological Society Conference. Retrieved 2006-10-06.
  35. Cappella, Chris (April 22, 2003). "Weather Basics: Subtropical storms". USA Today . Retrieved 2006-09-15.
  36. Monastersky, R. (May 15, 1999). "Oklahoma Tornado Sets Wind Record". Science News . Retrieved 2006-09-15.
  37. Justice, Alonzo A. (May 1930). "Seeing the Inside of a Tornado" (PDF). Monthly Weather Review . pp. 205–206. Retrieved 2006-09-15.
  38. "NASA Sees into the Eye of a Monster Storm on Saturn". NASA. 2006-11-09. Archived from the original on October 5, 2011. Retrieved November 10, 2006.
  39. Piccioni, G.; et al. (2007-11-29). "South-polar features on Venus similar to those near the north pole". Nature . 450 (7170): 637–40. Bibcode:2007Natur.450..637P. doi:10.1038/nature06209. PMID   18046395.