Far infrared

Last updated
Diagram of part of the electromagnetic spectrum Electromagnetic Far Infrared.jpg
Diagram of part of the electromagnetic spectrum

Far infrared (FIR) is a region in the infrared spectrum of electromagnetic radiation. Far infrared is often defined as any radiation with a wavelength of 15 micrometers (μm) to 1 mm (corresponding to a range of about 20  THz to 300 GHz), which places far infrared radiation within the CIE IR-B and IR-C bands. [1] The long-wave side of the FIR spectrum overlaps with so named terahertz radiation. Different sources use different boundaries for the far infrared; for example, astronomers sometimes define far infrared as wavelengths between 25 μm and 350 μm. [2]

Infrared electromagnetic radiation with longer wavelengths than those of visible light

Infrared radiation (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with longer wavelengths than those of visible light, and is therefore generally invisible to the human eye, although IR at wavelengths up to 1050 nanometers (nm)s from specially pulsed lasers can be seen by humans under certain conditions. IR wavelengths extend from the nominal red edge of the visible spectrum at 700 nanometers, to 1 millimeter (300 GHz). Most of the thermal radiation emitted by objects near room temperature is infrared. As with all EMR, IR carries radiant energy and behaves both like a wave and like its quantum particle, the photon.

Electromagnetic radiation form of energy emitted and absorbed by charged particles, which exhibits wave-like behavior as it travels through space

In physics, electromagnetic radiation refers to the waves of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

Wavelength spatial period of the wave—the distance over which the waves shape repeats, and thus the inverse of the spatial frequency

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings, and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

Contents

Visible light includes radiation with wavelengths between 400 nm and 700 nm, meaning that far infrared photons have tens to hundreds times less energy than visible light photons. [3]

Photon elementary particle or quantum of light

The photon is a type of elementary particle. It is the quantum of the electromagnetic field including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. The invariant mass of the photon is zero; it always moves at the speed of light in a vacuum.

Applications

Astronomy

Due to black-body radiation, objects with temperatures between about 5 K and 340 K will emit radiation in the far infrared range according to Wien's displacement law. This property is sometimes used to observe interstellar gases where new stars are often formed.

Black-body radiation thermal electromagnetic radiation

Black-body radiation is the thermal electromagnetic radiation within or surrounding a body in thermodynamic equilibrium with its environment, emitted by a black body. It has a specific spectrum and reverse intensity that depends only on the body's temperature, which is assumed for the sake of calculations and theory to be uniform and constant.

Wiens displacement law relation between the wavelength of the black-body radiation curve peak and the temperature

Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck radiation law, which describes the spectral brightness of black-body radiation as a function of wavelength at any given temperature. However, it had been discovered by Wilhelm Wien several years before Max Planck developed that more general equation, and describes the entire shift of the spectrum of black-body radiation toward shorter wavelengths as temperature increases.

For example, the center of the Milky Way Galaxy is very bright in far infrared images because the dense concentration of stars there heats the surrounding dust and causes it to emit radiation in this part of the spectrum. Disregarding the center of our own galaxy, the brightest far infrared object in the sky is the galaxy M82, which radiates as much far infrared light from its central region as all of the stars in the Milky Way combined. This is due to the dust at the center of M82 being heated by an unknown source. [2]

Messier 82 A starburst galaxy in the constellation Ursa Major

Messier 82 is a starburst galaxy approximately 12 million light-years away in the constellation Ursa Major. A member of the M81 Group, it is about five times more luminous than the whole Milky Way and has a center one hundred times more luminous than our galaxy's center. The starburst activity is thought to have been triggered by interaction with neighboring galaxy M81. As the closest starburst galaxy to Earth, M82 is the prototypical example of this galaxy type. SN 2014J, a type Ia supernova, was discovered in the galaxy on 21 January 2014. In 2014, in studying M82, scientists discovered the brightest pulsar yet known, designated M82 X-2.

Human body detection

Some human proximity sensors use passive infrared sensing in the far infrared wavelength to detect both static [4] and/or moving human bodies. [5]

Passive infrared sensor electronic sensor that measures infrared light

A passive infrared sensor is an electronic sensor that measures infrared (IR) light radiating from objects in its field of view. They are most often used in PIR-based motion detectors. PIR sensors are commonly used in security alarms and automatic lighting applications. PIR sensors detect general movement, but do not give information on who or what moved. For that purpose, an active IR sensor is required.

Therapeutic modality

The infrared radiation (IR) band covers the wavelength range of 700 nm – 1 mm, frequency range of 430 THz – 300 GHz, and photon energy range of 1.24 meV – 1.7 eV. Far-infrared radiation (FIR) is found on the wavelength spectrum at 15–1000 μm with a frequency range of 0.3–20 THz, and photon energy range of 1.2–83 meV. In these IR radiation bands, researchers have noted that the far-infrared radiation band "transfers energy purely in the form of heat which can be perceived by the thermoreceptors in human skin as radiant heat." [6] They report that this radiant heat can penetrate up to 1.5 inches (almost 4 cm) beneath the skin. Biomedical researchers have experimented with the use of FIR-emitting ceramics which are embedded into various fibers and woven into the fabric of garments. These researchers noted in subjects a "delay" in the "onset of fatigue induced by muscle contractions." [7] They propose that this ceramic-emitted FIR (cFIR) has the potential to promote cell repair.

In physics, the electronvolt is a unit of energy equal to exactly 1.602176634×10−19 joules in SI units.

Related Research Articles

The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.

Radiation Waves or particles propagating through space or through a medium, carrying energy

In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:

Ultraviolet astronomy Observation of electromagnetic radiation at ultraviolet wavelengths

Ultraviolet astronomy is the observation of electromagnetic radiation at ultraviolet wavelengths between approximately 10 and 320 nanometres; shorter wavelengths—higher energy photons—are studied by X-ray astronomy and gamma ray astronomy. Ultraviolet light is not visible to the human eye. Most of the light at these wavelengths is absorbed by the Earth's atmosphere, so observations at these wavelengths must be performed from the upper atmosphere or from space.

Thermal radiation electromagnetic radiation generated by the thermal motion of charged particles in matter

Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. Particle motion results in charge-acceleration or dipole oscillation which produces electromagnetic radiation.

Thermographic camera device that forms an image using infrared radiation

A thermographic camera is a device that forms a heat zone image using infrared radiation, similar to a common camera that forms an image using visible light. Instead of the 400–700 nanometre range of the visible light camera, infrared cameras operate in wavelengths as long as 14,000 nm (14 µm). Their use is called thermography.

Thermography infrared imaging

Infrared thermography (IRT), thermal imaging, and thermal video are examples of infrared imaging science. Thermographic cameras usually detect radiation in the long-infrared range of the electromagnetic spectrum and produce images of that radiation, called thermograms. Since infrared radiation is emitted by all objects with a temperature above absolute zero according to the black body radiation law, thermography makes it possible to see one's environment with or without visible illumination. The amount of radiation emitted by an object increases with temperature; therefore, thermography allows one to see variations in temperature. When viewed through a thermal imaging camera, warm objects stand out well against cooler backgrounds; humans and other warm-blooded animals become easily visible against the environment, day or night. As a result, thermography is particularly useful to the military and other users of surveillance cameras.

Terahertz radiation The range 300-3000 GHz of the electromagnetic spectrum

Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the ITU-designated band of frequencies from 0.1 to 30 terahertz (THz). One terahertz is 1012 Hz or 1000 GHz. Wavelengths of radiation in the terahertz band correspondingly range from 1 mm to 0.1 mm (or 100 μm). Because terahertz radiation begins at a wavelength of one millimeter and proceeds into shorter wavelengths, it is sometimes known as the submillimeter band, and its radiation as submillimeter waves, especially in astronomy.

Photometry (optics) science of the measurement of light

Photometry is the science of the measurement of light, in terms of its perceived brightness to the human eye. It is distinct from radiometry, which is the science of measurement of radiant energy in terms of absolute power. In modern photometry, the radiant power at each wavelength is weighted by a luminosity function that models human brightness sensitivity. Typically, this weighting function is the photopic sensitivity function, although the scotopic function or other functions may also be applied in the same way.

Ultraviolet photography is a photographic process of recording images by using light from the ultraviolet (UV) spectrum only. Images taken with ultraviolet light serve a number of scientific, medical or artistic purposes. Images may reveal deterioration of art works or structures not apparent under visible light. Diagnostic medical images may be used to detect certain skin disorders or as evidence of injury. Some animals, particularly insects, use ultraviolet wavelengths for vision; ultraviolet photography can help investigate the markings of plants that attract insects, while invisible to the unaided human eye. Ultraviolet photography of archaeological sites may reveal artifacts or traffic patterns not otherwise visible.

Lyman continuum photons

Lyman continuum photons, shortened to Ly continuum photons or Lyc photon, are the photons emitted from stars at photon energies above the Lyman limit. Hydrogen is ionized by absorbing LyC. Working off of Victor Schumann's discovery of ultraviolet light, from 1906 to 1914, Theodore Lyman observed that atomic hydrogen absorbs light only at specific frequencies and the Lyman series is thus named after him. All the wavelengths in the Lyman series are in the ultraviolet band. This quantized absorption behavior occurs only up to an energy limit, known as the ionization energy. In the case of neutral atomic hydrogen, the minimum ionization energy is equal to the Lyman limit, where the photon has enough energy to completely ionize the atom, resulting in a free proton and a free electron. Above this energy, all wavelengths of light may be absorbed. This forms a continuum in the energy spectrum; the spectrum is continuous rather than composed of many discrete lines, which are seen at lower energies.

Infrared heater

An infrared heater or heat lamp is a body with a higher temperature which transfers energy to a body with a lower temperature through electromagnetic radiation. Depending on the temperature of the emitting body, the wavelength of the peak of the infrared radiation ranges from 780 nm to 1 mm. No contact or medium between the two bodies is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.

Net radiometer

[

Electromagnetic absorption by water

The absorption of electromagnetic radiation by water depends on the state of the water.

Cosmic infrared background Infrared radiation caused by stellar dust

Cosmic infrared background is infrared radiation caused by stellar dust.

A flame detector is a sensor designed to detect and respond to the presence of a flame or fire, allowing flame detection. Responses to a detected flame depend on the installation, but can include sounding an alarm, deactivating a fuel line, and activating a fire suppression system. When used in applications such as industrial furnaces, their role is to provide confirmation that the furnace is working properly; in these cases they take no direct action beyond notifying the operator or control system. A flame detector can often respond faster and more accurately than a smoke or heat detector due to the mechanisms it uses to detect the flame.

Non-ionizing radiation electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules

Non-ionizingradiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule. Instead of producing charged ions when passing through matter, non-ionizing electromagnetic radiation has sufficient energy only for excitation, the movement of an electron to a higher energy state. In contrast, ionizing radiation has a higher frequency and shorter wavelength than nonionizing radiation, and can be a serious health hazard; exposure to it can cause burns, radiation sickness, cancer, and genetic damage. Using ionizing radiation requires elaborate radiological protection measures, which in general are not required with nonionizing radiation.

SAFIR

SAFIR is a proposed space observatory for far-infrared light. The plan calls for a single large mirror 5–10 meters (16–33 ft) in diameter, cryogenically cooled to 5 kelvins. This would feed detector arrays sensitive from 5 to 1000 µm. The possibility of servicing such a telescope in space has been evaluated.

References

  1. Byrnes, James (2009). Unexploded Ordnance Detection and Mitigation. Springer. pp. 21–22. ISBN   978-1-4020-9252-7.
  2. 1 2 "Near, Mid and Far-Infrared". Caltech Infrared Processing and Analysis Center. Archived from the original on 2012-05-29. Retrieved 2013-01-28.
  3. Gregory Hallock Smith (2006), Camera lenses: from box camera to digital, SPIE Press, p. 4, ISBN   978-0-8194-6093-6
  4. "Mems Thermal Sensors". Omron Electronic Components Web. Omron. Retrieved 7 August 2015.
  5. "Pyroelectric Detectors & Sensors for Far Infrared, FIR (5.0 μm – 15 μm)". Excelitas. Excelitas. Retrieved 7 August 2015.
  6. Vatansever, Fatma and Michael R. Hamblin. Far infrared radiation (FIR): its biological effects and medical applications. Photonics Lasers Med. 2012 Nov 1; 4: 255–266.
  7. Leung TK, Lee CM, Tsai SY, Chen YC, Chao JS. A pilot study of ceramic powder far-infrared ray irradiation (cFIR) on physiology: observation of cell cultures and amphibian skeletal muscle. Chin J Physiol. 2011;54(4):247–54.